Lung cancer risk from radon and radon progeny.

Epidemiological studies

Estelle RAGE
estelle.rage@irsn.fr

Epidemiology Laboratory of ionizing radiations
PSE-SANTE/SESANE/LEPID

EURADOS Winter School
Lodz, 14 February 2019
What about radon?

- Radon is a **radioactive gas of natural origin**
- It comes from the disintegration of uranium from the soil
- It is present **everywhere** at the surface of the earth
- It is colorless and odorless
- It concentrates in **confined places**
- It is a emitter of **α particles**
- **Chronic exposure**, over the life span, for the whole population
Mechanisms of action

Inhalation of radon
- Internal exposure to radon and its short-lived progeny

Distribution of radionuclides in the whole body, mainly in the lungs → irradiation of bronchial epithelium due to radon progenies

Dosimetric models show that:
- > 90% of the received dose is delivered to the lung
- Dose delivered to the other organs ≈ 100 fold lower
- But a part of this dose can be delivered to the red bone marrow (organ at risk for leukemia)

In 1988, the International Agency for Research on Cancer (CIRC-OMS) classified radon as a known pulmonary carcinogen in humans
- Experimental studies in vivo and in vitro: inhalation of radon for three species of animals (rats, hamsters and dogs)
- Results from epidemiological studies among miners (uranium, tin, fluorspar)
Historic of knowledge

- 1567: Unusual mortality from respiratory diseases among young miners (*Mala Metallorum*, Paracelse)
- 1879: Diseases identified as cancer of bronchus
- 1898: Discovery of radium (Curie)
- 1924: First mention as occupational disease
- 1940: Inhalation of radon presented as possible (Planck)
- 1946: Beginning of intensive extraction of uranium in France
- 1956: First measures of radioprotection in France
- 1960: Launch of the first epidemiological studies among miners
- 1988: Radon classified as a known pulmonary carcinogen in humans
- 1990: Launch of the first epidemiological studies in general population
Epidemiological studies among uranium miners
Studies among miners

Epidemiological studies among miners:
- **Uranium**
 - Canada (Ontario, Port Radium, Beaverlodge)
 - United States (Colorado, Nuevo Mexico)
 - Czech Republic, France, Germany, Australia
- **Fluorspar** - Canada (Newfoundland)
- **Tin** - China, UK, Czech Republic
- **Iron** - Sweden

Miners: relevant population
- Chronic exposure to Ionizing Radiations (IR), especially to radon
- Exposure to low / relatively high doses (according to cohort/period)
- Good quality of follow-up: mortality, administrative, dosimetric data

Contribution in public health and radioprotection
- Refine knowledges on health risks due to IR for low doses exposure (to provide information allowing to describe risks associated with radon exposure)
- Contribute to improve norms of radioprotection
- Contribute to assess the risks associated with indoor radon
- **Pooled analysis of 11 underground miner cohort studies (BEIR VI, 1999)**

<table>
<thead>
<tr>
<th>Place</th>
<th>Country</th>
<th>Type of mine</th>
<th>Follow-up period</th>
<th>N miners</th>
<th>Person-Years*</th>
<th>N lung cancer</th>
<th>Cumulative expo (WLM)</th>
<th>ERR / 100 WLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunnan</td>
<td>China</td>
<td>Tin</td>
<td>1976-1987</td>
<td>13,649</td>
<td>134,842</td>
<td>936</td>
<td>286.0</td>
<td>0.17</td>
</tr>
<tr>
<td>W-Bohemia</td>
<td>Czech Rep</td>
<td>Uranium</td>
<td>1952-1990</td>
<td>4,320</td>
<td>102,650</td>
<td>701</td>
<td>196.8</td>
<td>0.67</td>
</tr>
<tr>
<td>Colorado</td>
<td>US</td>
<td>Uranium</td>
<td>1950-1990</td>
<td>3,347</td>
<td>79,556</td>
<td>334</td>
<td>578.6</td>
<td>0.44</td>
</tr>
<tr>
<td>Ontario</td>
<td>Canada</td>
<td>Uranium</td>
<td>1955-1986</td>
<td>21,346</td>
<td>300,608</td>
<td>285</td>
<td>31.0</td>
<td>0.82</td>
</tr>
<tr>
<td>Newfound</td>
<td>Canada</td>
<td>Fluorspar</td>
<td>1950-1984</td>
<td>1,751</td>
<td>33,795</td>
<td>112</td>
<td>388.4</td>
<td>0.82</td>
</tr>
<tr>
<td>Malmberget</td>
<td>Sweden</td>
<td>Iron</td>
<td>1951-1991</td>
<td>1,294</td>
<td>32,452</td>
<td>79</td>
<td>80.6</td>
<td>1.04</td>
</tr>
<tr>
<td>New Mexico</td>
<td>US</td>
<td>Uranium</td>
<td>1943-1985</td>
<td>3,457</td>
<td>46,800</td>
<td>68</td>
<td>110.9</td>
<td>1.58</td>
</tr>
<tr>
<td>Beaverlodge</td>
<td>Canada</td>
<td>Uranium</td>
<td>1950-1980</td>
<td>6,895</td>
<td>67,080</td>
<td>56</td>
<td>21.2</td>
<td>2.33</td>
</tr>
<tr>
<td>Port Radium</td>
<td>Canada</td>
<td>Uranium</td>
<td>1950-1980</td>
<td>1,420</td>
<td>31,454</td>
<td>39</td>
<td>243.0</td>
<td>0.24</td>
</tr>
<tr>
<td>Radium Hill</td>
<td>Australia</td>
<td>Uranium</td>
<td>1948-1987</td>
<td>1,457</td>
<td>24,138</td>
<td>31</td>
<td>7.6</td>
<td>2.75</td>
</tr>
<tr>
<td>CEA-COGEMA</td>
<td>France</td>
<td>Uranium</td>
<td>1948-1986</td>
<td>1,769</td>
<td>39,172</td>
<td>45</td>
<td>59.4</td>
<td>0.51</td>
</tr>
</tbody>
</table>

| TOTAL | | | | 60,606 | 888,906 | 2,674 | 164.4 | 0.59 |

* Among exposed. WLM: Working Level Month. ERR: Excess Relative Risk. SE: multiplicative Standard Error

- ↑ risk of lung cancer with cumulative radon exposure
- Modifying effect of age at exposure (↓) and time since exposure (↓)
- Sub-multiplicative interaction between radon and smoking
- No evidence of other health effect associated with radon exposure
The French cohort of uranium miners: Design of the study

- Miner employed by the CEA-COGEMA company (AREVA since 2006)
- Male
- Employed for at least one year between 1946 and 1990
 (AREVA administrative database)

Possible outcomes:
- Alive
- Deceased
- Lost to follow-up
- Aged more than 85 y

Vital status from National database (RNIPP)

Population

Exposed

Non exposed

Cohort 5086 individuals

Follow-up

Exposed

Non exposed

Occupational history

(AREVA administrative database)

Annual occupational exposures

(AREVA, ALGADE)

Causes of death

from National database (CépiDC)
And Occupational medical service of AREVA (complementary)
French cohort: Assessment of IR exposures

- Setting up of radiation protection measures
- Retrospective reconstruction by experts
- Individual recording from ambient measurements
- Individual measurements
Radon exposure

<table>
<thead>
<tr>
<th></th>
<th>Mean (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual exposure < 1956 (WLM)</td>
<td>21.3 (0.1 - 99.0)</td>
</tr>
<tr>
<td>Annual exposure ≥ 1956 (WLM)</td>
<td>1.7 (0.1 - 15.3)</td>
</tr>
<tr>
<td>Cumulative exposure (WLM)</td>
<td>36.6 (0.1 - 960.1)</td>
</tr>
<tr>
<td>Duration of exposure (year)</td>
<td>11.8 (1.0 - 37.0)</td>
</tr>
</tbody>
</table>

French cohort: Assessment of IR exposures

Distribution of the number of exposed miners and of Radon exposure per year

1956: forced ventilation
Radon exposure and lung cancer risk:

Main results among uranium miner studies

- Excess of mortality from lung cancer
- Radon exposure - lung cancer risk relationship
 - Persistence among miners with low exposure
 - Persistence after taking into account for measurement errors
- Multi IR Exposure
 - Persistence of the risk associated with radon exposure after taking into account for other IR exposure
- Organ doses
 - Main contribution of radon to the lung dose
- Smoking habits
 - Persistence of taking into account smoking habits
- Modifying factors
 - Decrease of the risk with the time since exposure
Mortality Analyses

Standardized Mortality Ratio (SMR)

To assess mortality risks in the cohort in comparison to a reference (general population)

\[
SMR = \frac{\text{number of observed deaths for the cohort}}{\text{number of expected deaths for the cohort}}
\]

Example of the French cohort

- Whole cohort
 N=5,086; follow-up 1946-2007
 N cases=211

Significant increase of mortality from lung cancer

\[
SMR = 1.34 \quad [95\% \text{ CI}: 1.16-1.53]
\]
Relationship between Radon exposure - Lung cancer Risk

Risk assessment: Excess Relative Risk (ERR) - Linear model

- $RR(t,w)$: Relative Risk of death from lung cancer for a cumulative exposure to radon w at a t moment compared to the baseline risk.

$$RR(t,w) = 1 + \beta w(t)$$

- β: Excess of Relative Risk (ERR)
- $w(t)$: Cumulative exposure at t time
- Poisson Regression
- 5-years lag

Example of the French cohort

- Whole cohort
 N=5,086; follow-up 1946-2007
 N cases=211
- ERR for lung cancer death:
 $$ERR/100 \text{ WLM} = 0.71 \ [95\% CI: 0.31-1.30\%]$$
- Interpretation
 71% in the RR lung cancer death

[Estelle RAGE, EURADOS Winter School - Lodz, Poland - 14 February 2019]
Radon exposure - Lung cancer Risk relationship

Low level of radon exposure

- Example of the French cohort
 - + 1955 cohort
 N=3,377; N cases = 94; follow-up 1956-2007;
 - ERR/100 WLM = 2.42 [0.09-5.14]
 [Rage et al, Int Arch Occup Environ Health 2015]

- Example of the German Wismut cohort
 - Whole cohort N=58,987; N cases = 3,016
 follow-up 1946-2003;
 [Walsh et al, Radiat Res 2010]
 - + 1960 sub-cohort N=26,766; N cases = 334
 follow-up 1960-2008;
 [Kreuzer et al, Br J Cancer 2015]

Excess Relative Risk for lung cancer remained significant at low exposures
Multiple exposure to ionizing radiation (1)

IR exposure in uranium mines:
- Radon, external gamma ray, long-lived radionuclides (LLR)
- Some of uranium miner cohorts have assessed radon and other IR exposures

Relationship between Radon exposure - Lung cancer risk

- French +1955 sub-cohort (N = 3377 miners / N = 94 cases of lung cancer)

<table>
<thead>
<tr>
<th>Causes of death</th>
<th>Type of exposure</th>
<th>ERR (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung cancer</td>
<td>Radon (WLM)</td>
<td>2.42</td>
<td>(0.90 - 5.14)</td>
</tr>
<tr>
<td></td>
<td>Gamma (mGy)</td>
<td>0.74</td>
<td>(0.23 - 1.73)</td>
</tr>
<tr>
<td></td>
<td>LLR (Bq.m⁻³ h)</td>
<td>0.032</td>
<td>(0.009 - 0.073)</td>
</tr>
</tbody>
</table>

→ Significant ERR associated with radon, but also to LLR and gamma separately
→ But models including all exposures together could not be fitted

- Limitation due to:
 - high collinearity between exposures (correlation coefficients r > 0.70)
 - size of the cohort and a lack of statistical power

[Rage et al, Int Arch Occup Environ Health 2015]
Multiple exposure to ionizing radiation (2)

Relationship between Radon exposure - Lung cancer risk

- German +1960 sub-cohort (N = 26,766 miners / N = 334 cases of lung cancer)

<table>
<thead>
<tr>
<th></th>
<th>ERR /WLM)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude model</td>
<td>0.013</td>
<td>(0.007 - 0.021)</td>
</tr>
<tr>
<td>Separate adjustment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>external gamma rays</td>
<td>0.011</td>
<td>(0.004 - 0.019)</td>
</tr>
<tr>
<td>LLR</td>
<td>0.014</td>
<td>(0.007 - 0.022)</td>
</tr>
</tbody>
</table>

- Sufficient statistical power to adjust for other IR exposures
- Significant ERR associated with radon remains after considering other IR exposures

[Kreuzer et al, Br J Cancer 2015]
Dosimetric approach (1)

- European collaborative Alpha-Risk Project (2005-2009)
 - Quantification of cancer and non-cancer risks associated with multiple chronic radiation exposures:
 - Epidemiological studies: French, Czech, German cohorts of U miners
 - Calculation of doses to target organs

- Alpha Miner Software
 - Dosimetric Model (Human Respiratory Tract Model - ICRP Publication 66)
 - Parameters of the aerosol
 - Definition of different categories of job, mechanisation, type of mines, ...
 → Different scenarios of exposure and different levels of physical activity

- Calculation of lung doses
 - Absorbed doses (in gray) for each miner and for each year
Distribution of the cumulative absorbed lung doses

<table>
<thead>
<tr>
<th></th>
<th>French cohort</th>
<th>Czech cohort</th>
<th>German cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>N miners</td>
<td>3,271</td>
<td>9,979</td>
<td>29,086</td>
</tr>
<tr>
<td>Mean (min-max) (in mGy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Alpha</td>
<td>55.97 (0.01-472.36)</td>
<td>54.29 (0.66-338.42)</td>
<td>39.52 (0.00-709.90)</td>
</tr>
<tr>
<td>Alpha</td>
<td>77.92 (0-700.00)</td>
<td>373.54 (0.36-4550.44)</td>
<td>272.73 (0.01-7282.36)</td>
</tr>
</tbody>
</table>

→ In terms of dose contribution:

<table>
<thead>
<tr>
<th>Contribution of:</th>
<th>French cohort</th>
<th>Czech cohort</th>
<th>German cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha dose to the total lung dose</td>
<td>58 %</td>
<td>87%</td>
<td>87%</td>
</tr>
</tbody>
</table>
 Dosimetric approach (3)

Relationship between Lung Doses - Lung cancer Risk

<table>
<thead>
<tr>
<th>Alpha Risk Joint cohort (n = 1444 cases)</th>
<th>Separate regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERR / Sv</td>
</tr>
<tr>
<td>Total dose</td>
<td>0.07</td>
</tr>
<tr>
<td>Non alpha</td>
<td>15.70</td>
</tr>
<tr>
<td>Rn gas + progeny</td>
<td>0.07</td>
</tr>
<tr>
<td>LLR alpha</td>
<td>9.38</td>
</tr>
</tbody>
</table>

- Significant association with **Total and Non-Alpha lung doses** in separate models
- Significant association with **Alpha component**, but large uncertainties on estimates for LLR
- In multivariate analyses, **ERR remained significant for Rn gas + progeny and LLR alpha**, whereas significant association with non alpha lung dose did not remain.

Modifying factors of the exposure-risk relationship

Decrease of lung cancer risk
- with Time since exposure
- with Age at exposure (attained age)

Scenario: 2 WLM per y from age 18 to 64

[Beir V1 model (1999)]
[Czech-French model (2008)]

[Tomasek et al., Radiat Res 2008]
Impact of Smoking habits

Joint European cohort

Nested case-control study
- France
- Germany
- Czech Republic

1,236 cases (lung cancer)
2,678 controls

- Significant Relationship between Radon exposure - Lung cancer risk remained after taking into account smoking habits
- The risk increased in each category of smoking
- Sub-multiplicative interaction

[Leuraud et al. Radiat Res 2011]
Epidemiological studies in the general population
Indoor radon and lung cancer: case-control studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of publication</th>
<th>Country</th>
<th>Case/controls</th>
<th>RR per 100 Bq.m⁻³</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schoenberg</td>
<td>1990</td>
<td>USA (New Jersey)</td>
<td>480/442</td>
<td>1,49</td>
<td>0,89 - 1,89</td>
</tr>
<tr>
<td>Blot</td>
<td>1990</td>
<td>China</td>
<td>308/356</td>
<td>0,95</td>
<td>* - 1,08</td>
</tr>
<tr>
<td>Pershagen</td>
<td>1992</td>
<td>Sweden</td>
<td>201/378</td>
<td>1,16</td>
<td>0,89 - 1,92</td>
</tr>
<tr>
<td>Pershagen</td>
<td>1994</td>
<td>Sweden</td>
<td>1 281/2 576</td>
<td>1,10</td>
<td>1,01 - 1,22</td>
</tr>
<tr>
<td>Letourneau</td>
<td>1994</td>
<td>Canada</td>
<td>738/378</td>
<td>0,98</td>
<td>0,87 - 1,27</td>
</tr>
<tr>
<td>Alavanja</td>
<td>1994</td>
<td>USA (Missouri)</td>
<td>538/1 183</td>
<td>1,08</td>
<td>0,95 - 1,24</td>
</tr>
<tr>
<td>Auvinen</td>
<td>1996</td>
<td>Finland</td>
<td>517/517</td>
<td>1,11</td>
<td>0,94 - 1,31</td>
</tr>
<tr>
<td>Ruosteenoja</td>
<td>1996</td>
<td>Finland</td>
<td>164/331</td>
<td>1,80</td>
<td>0,90 - 3,50</td>
</tr>
<tr>
<td>Darby</td>
<td>1998</td>
<td>UK</td>
<td>982/3 185</td>
<td>1,08</td>
<td>097 - 1,20</td>
</tr>
<tr>
<td>Alavanja</td>
<td>1999</td>
<td>USA (Missouri)</td>
<td>247/299</td>
<td>0,85</td>
<td>0,73 - 1,00</td>
</tr>
<tr>
<td>Field</td>
<td>2000</td>
<td>USA (Iowa)</td>
<td>413/614</td>
<td>1,24</td>
<td>0,95 - 1,92</td>
</tr>
<tr>
<td>Kreienbrock</td>
<td>2001</td>
<td>Germany</td>
<td>1 449/2 297</td>
<td>0,97</td>
<td>0,82 - 1,14</td>
</tr>
<tr>
<td>Pisa</td>
<td>2001</td>
<td>Italy</td>
<td>138/291</td>
<td>1,40</td>
<td>0,30 - 6,66</td>
</tr>
<tr>
<td>Lagarde</td>
<td>2001</td>
<td>Sweden</td>
<td>436/1 649</td>
<td>1,10</td>
<td>0,96 - 1,38</td>
</tr>
<tr>
<td>Wang</td>
<td>2002</td>
<td>China</td>
<td>763/1 659</td>
<td>1,19</td>
<td>1,05 - 1,47</td>
</tr>
<tr>
<td>Lagarde</td>
<td>2002</td>
<td>Sweden</td>
<td>110/231</td>
<td>1,33</td>
<td>0,88 - 3,00</td>
</tr>
<tr>
<td>Kreuzer</td>
<td>2003</td>
<td>Germany</td>
<td>1 192/1 640</td>
<td>1,75</td>
<td>0,96 - 5,30</td>
</tr>
<tr>
<td>Baysson</td>
<td>2004</td>
<td>France</td>
<td>486/984</td>
<td>1,04</td>
<td>0,99 - 1,11</td>
</tr>
<tr>
<td>Bochicchio</td>
<td>2005</td>
<td>Italy</td>
<td>384/404</td>
<td>1,14</td>
<td>0,89 - 1,46</td>
</tr>
<tr>
<td>Wichmann</td>
<td>2005</td>
<td>Germany</td>
<td>2 963/4 232</td>
<td>1,10</td>
<td>0,98 - 1,30</td>
</tr>
<tr>
<td>Sandler</td>
<td>2006</td>
<td>USA (Connecticut, Utah)</td>
<td>1 474/1 811</td>
<td>1,002</td>
<td>0,79 - 1,21</td>
</tr>
<tr>
<td>Wilcox</td>
<td>2008</td>
<td>USA (New Jersey)</td>
<td>561/740</td>
<td>1,05</td>
<td>0,86 - 1,56</td>
</tr>
<tr>
<td>Turner</td>
<td>2011</td>
<td>USA</td>
<td>3 493/811 961</td>
<td>1,15</td>
<td>1,01 - 1,31</td>
</tr>
<tr>
<td>Brauner</td>
<td>2012</td>
<td>Danemark</td>
<td>589/52 692</td>
<td>1,04</td>
<td>0,69 - 1,56</td>
</tr>
</tbody>
</table>
European case-control study (1/3)

Three joint studies

<table>
<thead>
<tr>
<th></th>
<th>Studies n</th>
<th>Cases n</th>
<th>Controls n</th>
<th>RR / 100 Bq.m⁻³ (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>European</td>
<td>Darby 2005</td>
<td>13</td>
<td>7 148</td>
<td>14 208</td>
</tr>
<tr>
<td>North American</td>
<td>Krewski 2006</td>
<td>7</td>
<td>3 662</td>
<td>4 966</td>
</tr>
<tr>
<td>Chinese</td>
<td>Lubin 2004</td>
<td>2</td>
<td>1 050</td>
<td>1 995</td>
</tr>
</tbody>
</table>

- Increase in the RR about 10% per 100 Bq.m⁻³

Joint European study in general population

- 13 studies in 9 countries: Belgium, Czech Republic, Finland, France, Germany, Great-Britain, Italia, Spain, Sweden

- **Standardized protocol:**
 - Identical inclusion criterias
 - Common questionnaire
 - Reconstruction of indoor exposure for 30 years
 - Inter-comparison of the methods of measure
 - Joint analysis of individual data

- Population: 7,148 cases / 14,208 controls
European case-control study (2/3)

- Indoor mean radon concentration
 - Cases = 104 Bq.m⁻³
 - Controls = 97 Bq.m⁻³

- Risk of lung cancer with radon concentration
 - \(RR = 1.08 \text{ per } 100 \text{ Bq.m}^{-3} \) [1.03 - 1.16]
 - \(RR = 1.16 \text{ per } 100 \text{ Bq.m}^{-3} \) [1.05 - 1.31]
 - After consideration of uncertainties related to estimations of radon concentration

- Significant relationship for exposures < 200 Bq.m⁻³

[Darby et al. BMJ 2005]
European case-control study (3/3)

- Joint effect of radon and smoking

Significant relationship with radon among smokers and non-smokers

[Darby et al. Scand J Work Environ Health 2006]
Population attributable fraction of lung cancer mortality from residential radon

[Gaskin et al. Environ Health Physics 2018]

<table>
<thead>
<tr>
<th>Countries</th>
<th>Radon exposure (Bq.m<sup>-3</sup>)</th>
<th>Attributable fraction for lung cancer from residential radon (%)</th>
<th>BEIR VI<sup>a</sup></th>
<th>Hunter<sup>b</sup></th>
<th>Kreuzer<sup>c</sup></th>
<th>Krewski<sup>d</sup></th>
<th>Darby<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuba</td>
<td>5</td>
<td></td>
<td>4,3</td>
<td>2,3</td>
<td>2,1</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>Australia</td>
<td>9</td>
<td></td>
<td>4,7</td>
<td>3,7</td>
<td>3,5</td>
<td>2,1</td>
<td>1,6</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>14</td>
<td></td>
<td>8,0</td>
<td>5,8</td>
<td>5,4</td>
<td>4,1</td>
<td>3,1</td>
</tr>
<tr>
<td>Algeria</td>
<td>22</td>
<td></td>
<td>15,8</td>
<td>9,0</td>
<td>8,3</td>
<td>6,4</td>
<td>4,8</td>
</tr>
<tr>
<td>China</td>
<td>34</td>
<td></td>
<td>15,9</td>
<td>13,1</td>
<td>12,4</td>
<td>9,5</td>
<td>7,2</td>
</tr>
<tr>
<td>Canada</td>
<td>42</td>
<td></td>
<td>16,3</td>
<td>15,5</td>
<td>14,6</td>
<td>11,2</td>
<td>8,6</td>
</tr>
<tr>
<td>France</td>
<td>50</td>
<td></td>
<td>19,4</td>
<td>17,8</td>
<td>16,9</td>
<td>13,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Sweden</td>
<td>67</td>
<td></td>
<td>19,2</td>
<td>22,4</td>
<td>21,2</td>
<td>16,3</td>
<td>13,0</td>
</tr>
<tr>
<td>Mexico</td>
<td>82</td>
<td></td>
<td>26,7</td>
<td>25,9</td>
<td>24,9</td>
<td>19,3</td>
<td>15,4</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>94</td>
<td></td>
<td>24,3</td>
<td>28,9</td>
<td>27,5</td>
<td>21,4</td>
<td>17,3</td>
</tr>
<tr>
<td>Poland</td>
<td>133</td>
<td></td>
<td>28,4</td>
<td>36,1</td>
<td>34,8</td>
<td>27,3</td>
<td>22,6</td>
</tr>
<tr>
<td>66 countries (median)</td>
<td>38</td>
<td></td>
<td>16,5</td>
<td>14,4</td>
<td>13,6</td>
<td>10,4</td>
<td>8,4</td>
</tr>
</tbody>
</table>

Radon exposure: national geometric mean (in 2012)

- **a** EAC Model « exposure age concentration », joint analysis 11 miner cohorts, BEIR VI (NRC 1999)
- **b** Three European joint analysis on miners (Hunter et al. 2013)
- **c** German cohort of uranium miners (Kreuzer et al. 2015)
- **d** North-American joint analysis in the general population (Krewski et al. 2003)
- **e** European joint study in the general population (Darby et al. 2006)

Consistence in findings according to the models (based on miners studies)
Summary of knowledges on lung cancer risk and radon exposure

- Good **consistence among results** from studies among miners and in the general population
- Persistence of lung cancer risk **at low level of radon**
- Increased risk observed among smokers as well as **non smokers**
- **Smoking-radon interaction** between additive and multiplicative effect
- **Lung cancer**: to date, the only highlighted risk associated with radon (*studies on leukemia, skin cancer, brain cancer, stomach cancer, ...*)
- Lack of knowledge on the effect of radon exposure during childhood
Perspectives

International joint cohort

- **Pooled Uranium Miners Analysis (PUMA)**

<table>
<thead>
<tr>
<th>Country, Place</th>
<th>Ur Miners</th>
<th>Period of Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada, Ontario</td>
<td>28,546</td>
<td>1954-2007</td>
</tr>
<tr>
<td>Canada, Beaverlodge</td>
<td>9,498</td>
<td>1950-1999</td>
</tr>
<tr>
<td>Canada, Port Radium</td>
<td>3,047</td>
<td>1950-1999</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>9,978</td>
<td>1952-2010</td>
</tr>
<tr>
<td>France</td>
<td>5,086</td>
<td>1946-2007</td>
</tr>
<tr>
<td>Germany</td>
<td>58,976</td>
<td>1946-2013</td>
</tr>
<tr>
<td>USA, Colorado Plateau</td>
<td>4,137</td>
<td>1960-2005</td>
</tr>
<tr>
<td>USA, New Mexico</td>
<td>3,469</td>
<td>1943-2012</td>
</tr>
<tr>
<td>Total: Pooled study</td>
<td>126,733</td>
<td></td>
</tr>
</tbody>
</table>

Objectives
- Set up a large international cohort of uranium miners
- Increase the statistical power
- Improve the assessment of the relationship between radon exposure and:
 - Risk of Lung cancer risk (refinement, modifying factors, low exposure, ...)
 - Risk of cancer other than lung
 - Risk of non cancer disease

Estelle RAGE

EURADOS Winter School - Lodz, Poland - 14 February 2019

IRSN
Thank you