EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS IN JAPAN DUE TO THE FUKUSHIMA DAIICHI NPP ACCIDENT

M.A. Lopez (Ciemat, Spain), P. Fojtik, D. Franck and J. Osko

EURADOS WG7 “Internal Dosimetry”
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS IN JAPAN DUE TO THE FUKUSHIMA DAIICHI NPP ACCIDENT

PARTICIPANTS:

A.L. Lebacq, SCK-CEN, Belgium
C. Li, Health Canada, Canada
P. Fojtik, SURO, Czech Republic
I. Malatova, SURO, Czech Republic
S. Holm. Righhospitalet, Denmark
J. Huikari, STUK, Finland
M. Muikku, STUK, Finland
D. Franck, IRSN, France
P. Bérard, CEA, France
B. Breustedt, KIT, Germany
U. Gerstmann, BfS, Germany
C. Scholl, LIA.NRW, Germany
V. Kamenopoulou, GAEC; Greece
K. Potiriadis, GAEC, Greece
I. Balashazy, MTA EK, Hungary
P. Zagyvai, MTA EK, Hungary
B. Lind, NRPA; Norway
J. Osko, NCBJ, Poland
R. Kierepko, IFJ PAN, Poland
J.W. Mietelski, IFJ PAN, Poland
T. Pliszczynski, NCBJ, Poland
M.A. Lopez, CIEMAT, Spain
J.F. Navarro, CIEMAT, Spain
T. Navarro, CIEMAT, Spain
B. Perez, CIEMAT, Spain
L. Del Risco, SSM, Sweden
G. Etherington, PHE, UK
J.E. Scott, PHE, UK
V. Vasylenko, NRCMR, Ukraine
Collaboration of EURADOS WG7 with NIRS - National Institute of Radiological Sciences, Japan -

EURADOS WG7 was contacted in June 2012 for the revision of the proceedings of 1st NIRS Symposium on “Reconstruction of Early Internal Dose in the TEPCO Fukushima Daiichi Nuclear Power Station Accident”, Chiba, Japan, 2012

Osamu Kurihara, NIRS (Japan) attended the EURADOS WG7 meeting in Budapest in October 2012

Invitation to WG7

2nd NIRS Symposium and Technical visit to Fukushima
“Reconstruction of Early Internal Dose in the TEPCO FDNPS Accident”, Tokyo, January 27-28, 2013
January 2013: some WG7 members attended 2nd NIRS Symposium in Tokyo

- Visit at Fukushima NPP area including J-Village and Fukushima Daiini NPP

- Proposal of EURADOS Survey: WG7 will collect information about monitoring data of exposed foreigners in Japan, obtained in their respective countries at early stage after Fukushima Daiichi NPPP accident
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

- EURADOS Survey 2013:
 - 300 foreigners in-vivo monitored from 15 countries (adults and children)

- 176 exposed persons (adults) from
 - Belgium (9),
 - Canada (1),
 - Czech Republic (8),
 - Finland (1),
 - France (76),
 - Germany (58),
 - Greece (5),
 - Hungary (2),
 - Norway (3),
 - Poland (7),
 - Sweden (1),
 - UK (1)
 - Ukraine (4)
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

EARLY MEASUREMENTS (MAR- APR 2011)

<table>
<thead>
<tr>
<th>Location</th>
<th>No. of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akita</td>
<td>1</td>
</tr>
<tr>
<td>Sendai</td>
<td>32</td>
</tr>
<tr>
<td>Yonezawa</td>
<td>2</td>
</tr>
<tr>
<td>Fukushima City</td>
<td>18</td>
</tr>
<tr>
<td>Minamisoma</td>
<td>1</td>
</tr>
<tr>
<td>Koriyama</td>
<td>4</td>
</tr>
<tr>
<td>Centre (around NPP)</td>
<td>9</td>
</tr>
<tr>
<td>Tamura</td>
<td>1</td>
</tr>
<tr>
<td>Iwaki</td>
<td>6</td>
</tr>
<tr>
<td>Utsunomiya</td>
<td>1</td>
</tr>
<tr>
<td>Mito</td>
<td>7</td>
</tr>
<tr>
<td>North of Tokyo</td>
<td>2</td>
</tr>
<tr>
<td>Chiba</td>
<td>3</td>
</tr>
<tr>
<td>Tokyo</td>
<td>49</td>
</tr>
<tr>
<td>Osaka</td>
<td>3</td>
</tr>
<tr>
<td>Hiroshima</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL: 139

LATE MEASUREMENTS (= MAY 2011)

<table>
<thead>
<tr>
<th>Location</th>
<th>No. of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyagi Pref.</td>
<td>1</td>
</tr>
<tr>
<td>Sendai</td>
<td>1</td>
</tr>
<tr>
<td>Fukushima City</td>
<td>5</td>
</tr>
<tr>
<td>Koriyama</td>
<td>1</td>
</tr>
<tr>
<td>Tamura</td>
<td>1</td>
</tr>
<tr>
<td>NPP</td>
<td>4</td>
</tr>
<tr>
<td>Utsunomia</td>
<td>1</td>
</tr>
<tr>
<td>Hitachi</td>
<td>3</td>
</tr>
<tr>
<td>Tsukuba</td>
<td>1</td>
</tr>
<tr>
<td>Ushiku</td>
<td>1</td>
</tr>
<tr>
<td>Tokyo</td>
<td>5</td>
</tr>
<tr>
<td>Chiba</td>
<td>2</td>
</tr>
<tr>
<td>Yokohama</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL: 27
The Internal Exposure:

- **Release events** from Fukushima Daiichi reactors on **12-25 March 2011**

- **Largest releases** before 17 March

- **Tokyo**: higher concentration of gamma emitters in the air on **15 March and 21-22 March 2011**

- **Internal exposures**: mainly radioiodine and radiocaesium; also Tellurium

- **Fallout** started to be significant on **16 March 2011**
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Scenario of EURADOS Survey (I): EXPOSED PERSONS

- Foreigners returned at home after suffering the earthquake and its consequences, concerned about radiological exposure received in Japan.

- Contact with regulatory bodies and/or National Administration and Dosimetry labs.
 - **Questionnaires to collect information** about location in Japan during the Fukushima Daiichi NPP accident, diet habits, time spent indoor/outdoor,...

- **Internal dosimetry services/laboratories**: not easy to make public understand and trust in the results of in-vivo and in-vitro monitoring and dose. It was required social skills and empathy with the exposed persons being monitored.

- **Members of the public** with no knowledge about radioactivity, had to trust in authorities and dosimetrists to understand the results of the measurements. Main concern: health effects of the intakes detected
Scenario of EURADOS Survey (II): INTERNAL DOSIMETRY SERVICES/LABORATORIES

- **Capabilities required for in-vivo monitoring of gamma emitters:**
 - Whole Body Counter for the measurement of gamma-emitters in total body (radiocaesium isotopes, also 132Te)
 - Thyroid counting for evaluation of radiodine in thyroid (131I, 132I)
 - Calibration for adults and for children

- **Assumptions for interpretation of monitoring data & dose calculations. 1st approach:**
 - Inhalation of gamma emitters from the radioactive plume (release phase)
 - Time of intake; 12 March 2011
 - Members of the Public: particle size AMAD= 1 µm

- **Communication with people being in-vivo monitored:** language of science with “easy words” in order people understand and trust in the results of measurements and dose
EURADOS SURVEY:
IN-VIVO MONITORING of gamma emitters in total body and radioiodine in thyroid

(1) HP Ge detectors for gamma emitters in Total Body:

- **Mobile Units:**
- **WBC- Shielded Rooms:** Chair and bed counting geometries:

(2) NaI(Tl) detectors:

- **FASTSCAN WBC:**
 - 2 NaI(Tl)
 - Total Body & Thyroid Monitoring, also in Fukushima site

- **NaI(Tl) detector:**
 - ^{131}I, ^{132}I in Thyroid

(3) NaI(Tl) + HPGe detectors:

- shielded room, Total Body
EURADOS SURVEY:
IN-VIVO MONITORING of gamma emitters in total body and radioiodine in thyroid

Quantification in terms of **Activity (Bq) retained in total body or in thyroid at a time t (days) after the intake** by gamma spectrometry

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>$T_{1/2}$</th>
<th>E (keV)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-131</td>
<td>8.02 days</td>
<td>80.19, 284.30, 364.49, 636.99</td>
<td>2.6, 6.1, 81.7, 7.17</td>
</tr>
<tr>
<td>I-132</td>
<td>2.30 h</td>
<td>667.70, 772.60, 1399.0</td>
<td>98.7, 75.6, 7.0</td>
</tr>
<tr>
<td>Te-132</td>
<td>3.20 days</td>
<td>49.72, 228.33</td>
<td>15.1, 88.1</td>
</tr>
<tr>
<td>Cs-134</td>
<td>2.07 years</td>
<td>569.33, 604.72, 795.86</td>
<td>15.4, 97.2, 85.5</td>
</tr>
<tr>
<td>Cs-137</td>
<td>30.17 years</td>
<td>661.66</td>
<td>85.1</td>
</tr>
</tbody>
</table>

HPGe detectors: best identification of peaks in the gamma spectrum
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Results of EURADOS SURVEY:
In-vivo monitoring data
Activity > DL, only adults

Thyroid Monitoring

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>No. of cases</th>
<th>Activity (Bq)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>131I</td>
<td>100</td>
<td>Max: 644</td>
<td>Min: 9</td>
<td></td>
</tr>
<tr>
<td>132I</td>
<td>2</td>
<td>Max: 86</td>
<td>Min: 3</td>
<td></td>
</tr>
</tbody>
</table>

WBC - Total body Monitoring

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>No. of cases</th>
<th>Activity (Bq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>137Cs</td>
<td>77</td>
<td>Max: 670</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 18</td>
</tr>
<tr>
<td>134Cs</td>
<td>40</td>
<td>Max: 637</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 24</td>
</tr>
<tr>
<td>131I</td>
<td>45</td>
<td>Max: 890</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 6</td>
</tr>
<tr>
<td>132I</td>
<td>26</td>
<td>Max: 953</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 41</td>
</tr>
<tr>
<td>132Te</td>
<td>26</td>
<td>Max: 744</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min: 24</td>
</tr>
</tbody>
</table>
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Days from 11-MAR-2011
Assessment of doses due to internal exposures

1. Determination of amount of radioactive material in the human body by direct measurements from Whole/partial Body Counting (WBC) and/or indirect methods like excretion analysis or air monitoring
 => Monitoring data M (Bq, Bq/d or Bq/m3)

2. The interpretation of the monitoring data $M(Bq)$, in terms of Intake I (Bq) and Committed Effective Dose $E(50)$ mSv, requires to know:
 - the physical (e.g. particle size: AMAD) and chemical (absorption type) characteristics of the radioactive substances inside the body,
 - their biokinetics,
 - the time of intake
 - The type of intake (acute, chronic) and
 - the pathway (inhalation, ingestion,…).
Internal Dose Assessments from a single monitoring data

- Date/Time of Intake T_0 (dd/mm/yyyy)
- Date/Time of Monitoring: t (days) post Intake
- Result of In-vivo monitoring: $M(Bq)$ Activity (from WBC) or In-vitro monitoring: $M(Bq/d)$ Activity rate in excreta

Assessment of Intake $I(Bq)$ from a single monitoring data $M(Bq)$:

$$I = \frac{M}{m(t)}$$

$m(t)$ = retention function (whole body or organ) or excretion function (excreta) at t (days) post intake (ICRP)

Assessment of the Committed Effective Dose $E(50)$ mSv:

$$E(50) \text{ mSv} = I(Bq) \times e(50)(\text{mSv/Bq})$$

where $e(50) \text{ mSv/Bq}$ is the dose coefficient (ICRP) = committed effective dose when Intake is 1 Bq
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident:

CASE STUDIES

- Intakes of radionuclides detected in 176 exposed persons from:
 - Belgium (9),
 - Canada (1),
 - Czech Republic (8),
 - Finland (1),
 - France (76),
 - Germany (58),
 - Greece (5),
 - Hungary (2),
 - Norway (3),
 - Poland (7),
 - Sweden (1),
 - UK (1),
 - Ukraine (4)
FRANCE:

IRSN: in-vivo monitoring at Le Vésinet WBC (near Paris) and mobile units
Contact-person: Didier Franck

- 62 company employees returning from Japan (business trips)
- 36 Air crew members
- 95 Journalists
- 75 private individuals (expatriates and students)

- End of 2011: 280 in-vivo measurements
 268 French citizens (some people monitored several times)

- Whole body counting: measurement of gamma emitters in total body (tm= 20 min)
- Thyroid counting: determination of radioiodine (131I, 132I) in the thyroid (tm= 15 min)

- 84 measurements: Activity (Bq) > DL (Detection Limit) – 30% positive results
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

- **France-IRSN**: Collection of a questionnaire from French citizens at their arrival, with information in the locations in Japan during and after the Fukushima Daiichi NPP accident and the places they visited at that time before their leaving.

- **IRSN Capabilities:**
 - Fleet of 10 Mobile units for Accident Monitoring of internal contamination
 - HPGe detector systems
- **France-IRSN:**
 - Group 1: 77% of monitored persons during the first 3 weeks after Fukushima Daiichi NPP accident (mainly journalists)
 - Group 2: monitored persons on July-September 2011 (summer holidays)

- **In-vivo monitoring results:**
 - Activity in the **thyroid**: 131I most frequently detected; also 132I / 132Te
 - Activity in **total-body**: 137Cs; and 134Cs detected in few cases

- **Interpretation of monitoring data for Dose assessments:**
 - Assumptions: **time of intake on 12 March 2011, Acute Inhalation**, particle size: AMAD = 1 µm
 - Estimation of the **Committed Effective Dose** $E(50)$ mSv
 - **Annual Dose Limit** (public exposures): $E = Hp(10) + E(50) = 1$ mSv/year

 - H_{THYROID} that triggers the process of administering stable iodine in France is 50 mSv
France-IRSN. Most exposed person:

- **Date of measurement:** 18/3/2011
- **Location of exposure:** Iwaki

In-vivo monitoring results (**IRSN Mobile Unit**):

- **Thyroid counting** (DL= 5 Bq)
 - 161 ± 16 Bq of ^{131}I

- **Whole Body Counting** (DL= 40 Bq)
 - 744 ± 112 Bq of ^{132}Te
 - 953 ± 143 Bq of ^{132}I
 - 204 ± 31 Bq of ^{137}Cs

Dose evaluation:

- **Total E(50)=** 0.09 mSv, < 0.1 mSv
- **H_{THYROID}** < 1.4 mSv
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Germany in 2011: 19 in-vivo monitoring laboratories, 358 measurements reported, Most of results < DL, only 75 cases (21%) > DL

EURADOS Survey:
- BfS – Contact person: U. Gerstmann
 - 22 cases reported (dates of measurements: 18/3–28/4/2011 + 20/10/2011)
 - Only WBC, no thyroid counting

- KIT- Karlsruhe Institute of Technology – Contact person: B. Breustedt
 - 1 case reported (date of measurement: 18/3/2011)
 - WBC results: detection of 131I, 137Cs, 134Cs, 132I, 132Te in total-body (>LD)

- LIA.NRW- Contact person: C. Scholl
 - WBC and Thyroid counting results reported

The Fukushima accident and travel medicine. Analysis and recommendations.
Travel Medicine and Infectious Disease (2013) 11, 139-145.
Germany - Summary:

- Radionuclides detected:
 - Thyroid counting (up to 29/3/2011)
 - ^{131}I: 20 cases, maximum activity 644 ± 74 Bq in thyroid (18/3/2011)
 - ^{132}I: 2 cases, 8 and 15 Bq (17-18/3/2011)
 - WBC:
 - ^{137}Cs detected in 44 cases, range of 18 – 581 Bq in total body
 - ^{134}Cs detected in 22 persons, range of 24 – 637 Bq in total body
 - ^{132}Te detected in 22 persons, range of 42 – 344 Bq in total body, up to 24/3/2011

- Most of cases $E(50) < 0.1$ mSv
- $E(50)_{\text{MAX}} = 0.5$ mSv
 - External dose to be received in a flight from Europe to Japan and return = 0.13 mSv (calculated with EPCARD).
 - Average annual effective dose in Germany: 2.1 mSv
 - Intakes due to Fukushima Daiichi NPP accident: no radiological threat
Germany - Summary:

BfS WBC Neuherberg: 4 big NaI-detectors and a small HPGe-detector under the stretcher. The detectors have been replaced with four big HPGe-detectors with electric cooling in March 2013. Brick calibration phantom – Standard Man – gamma emitters in total body.

BfS WBC Berlin. HP Ge detector
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Germany - Summary: LIA.NRW

- In-vivo monitoring LIA.NRW
- HP Ge detectors
- WBC
- Thyroid counting
- Identification/quantification of the radionuclides in complex gamma spectra
UK – Contact persons: July Scott, George Etherington (PHE, UK)
1 case reported: Male journalist.

- **Internal exposure in Japan:**
 - 12-13 March 35 km from Fukushima Daiichi NPP
 - 13-16 March 80 km from NPP
Open air most of the time
Iodine Tablet administration on 25 March 2011

Time of intake: assumed 12 March 2011

- **Measurements at PHE, Chilton, UK**
 - 4 April 2011, 23 days post intake
 - In-vivo monitoring:
 - WBC: gamma emitters in total-body
 - Thyroid counting: Radioiodine
 - In-vitro monitoring: gamma emitters in urine (gamma spectrometry)
UK cont.

- **Intake and dose evaluation:**
 - **Time of intake:** assumed 12 March 2011
 - **Monitoring data:** 4 April 2011, 23 days post intake
 - WBC: 5 NaI(Tl) detectors
 - Result of 131I: 64 ± 35 Bq in total-body
 - 137Cs, 134Cs < MDA (Minimum Detectable Activity = 40 Bq)
 - Thyroid counting: 1 small HP Ge detector
 - Result of 131I: 27 ± 14 Bq in thyroid
 - In-vitro monitoring:
 - Result of 131I: 0.39 ± 0.18 Bq in 24h urine simple

- **Interpretation of Monitoring data:** Calculation of Intake I(Bq), $E(50)$ and H_{THYROID}
 - Acute Intake – Inhalation on 12 March 2011
 - 131I: type F (aerosol, absorption type F “FAST”, rapid absorption to the blood)
 - ICRP default values (particle size AMAD= 1 µm)
 - Calculation (IMBA software):
 - **Intake** = 2536 Bq of 131I
 - $E(50)$ = 1.87E-2 mSv, <1 mSv
 - H_{THYROID} = 3.72E-1 mSv
Sweeden – Contact person: Lilian del Risco (SSM)

6 cases reported.

Measurements performed:
 SSM Stockholm (in-vivo monitoring)
 Linköping Univ. Hospital (in-vitro monitoring)

1. Case A. Male, construction worker in Tsukuba
 - Internal exposure in Japan:
 12 March 2011: travel from Tsukuba to Tokyo
 Arrival at Stockholm Airport on 14 March 2011

 - Measurement performed at SSM WBC, on 14 March 2011 !!!!
 - WBC. NaI(Tl) detector: 195 ± 22 Bq 137Cs
 - 170 ± 20 Bq 134Cs
 - Thyroid counting: 131I < Detection Limit (DL= 10 Bq)

 - Interpretation of Monitoring data: Calculation of I(Bq) and E(50):
 - Acute Intake – Inhalation of Cs type F. Particle size: AMAD= 1 µm
 - Total Intake = 540 Bq;
 - E(50) = 9E-3 mSv <1 mSv
2. Case C.
- **Internal exposure in Japan:**
 - Female living in Tokyo

- Measurements performed on **16 April 2011** at **Linköping Univ. Hospital, Sweden**
 - *In-vitro monitoring. Spot urine samples Vol= 1L. Gamma spectrometry.*
 - $21.4 \pm 0.5 \text{ Bq/l } ^{131}\text{I}$ in urine
 - $0.93 \pm 0.01 \text{ Bq/l } ^{137}\text{Cs}$ in urine

- **Interpretation of Monitoring data:** Calculation of Intake I(Bq) and E(50)
 - Acute Intake – Inhalation Particle size: AMAD= 1µm ???
 - **Intake** $^{131}\text{I}: 25390 \text{ Bq}$
 - **Intake** $^{137}\text{Cs}: 74 \text{ Bq}$
 - Total Intake = 25464 Bq;
 - Total E(50) = 0.18 mSv < 1 mSv
 - Hthyroid = 0.14 mSv
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Greece – Contact persons: K. Potiriadis, V. Kamenopoulou (GAEC)

5 cases reported: Greek citizens in Tokyo

- **WBC measurements**: 1 NaI(Tl) detector + 1 HP Ge detector
 - 137Cs, 134Cs (3 cases): up to 350 Bq
 - Detection of 132Te/132I (very small amounts, not quantified)

- **Thyroid counting**: NaI(Tl) detector
 - 131I (5 cases) up to 800 Bq

- **In-vitro monitoring**: HP Ge detector, γ emitters in urine samples
Greece – Cont.

- Interpretation of monitoring data - dose calculation (IMBA Software):

 - Time of intake: the day that the plume arrives in Tokyo (14/3/2011)

 - Acute Inhalation

- Absorption type: available data from the environmental measurements during the time after the accident were used:

 - In the case of 131I, a mixture of 30 % F (Fast) and 70% V (vapour) was assumed

Calculation of E(50) based on the measurements of Iodine and Caesium isotopes. The estimated doses were: $E(50) = 75$, 280, 43, 9, 42 µSv.

$E(50)_{\text{max}} = 0.28$ mSv
Finland – Contact persons: Maarit Muikku, Jussi Hurihari (STUK)

1 case reported

- WBC: ^{137}Cs: 80 ± 20 Bq.
 ^{134}Cs: 90 ± 20 Bq

- Interpretation of monitoring data: calculation of Intake I(Bq) and E(50)
 - Intake scenario: CHRONIC INHALATION during 4 months
 - ICRP default values, IMBA software

- Intake < 2.5 Bq/d
- E(50) < 4E-3 mSv
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Canada – Contact person: Chunsheng Li (Health Canada)

1 case reported

- Monitoring: 04/01/2012
- WBC: \(^{137}\text{Cs}: 37 \pm ? \text{ Bq.}^{134}\text{Cs}: 78 \pm ? \text{ Bq}

- Interpretation of monitoring data (IMBA Software)
 The scenario of Intake:
 - Person working in Japan
 - Considering that Japanese Government implemented appropriate food/water control after the release of radioactive material in the environment: INHALATION is assumed as main pathway of intake
 - Acute Intake (Inhalation) in the week 14-21 March 2011

- Intake and Dose: \(^{134}\text{Cs}: I = 700 \text{ Bq}; E(50) = 6.8E-3 \text{ mSv}^{137}\text{Cs}: I = 1150 \text{ Bq}; E(50) = 7.7E-3 \text{ mSv}
 TOTAL E(50) = 0.014 \text{ mSv}
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Belgium – Contact person: Anne Laure Lebacq (SCK-CEN, Mol)

8 cases reported, in-vivo monitoring:
- 17/3/11 – 20/4/11, detection of ^{131}I in thyroid (6 – 91 Bq), Ge detector
- 10/8/11 and 23/12/11, WBC: ^{137}Cs detected (∼ 55 Bq), NaI(Tl) detector

Case A.- Female journalist
Tokyo -> Koriyama -> Sendai -> Tokyo
12/March 13/March 14 March 15/March

- 1st measurement (SCK-CEN): 17/March/2011
detection of ^{131}I, $^{137}\text{Cs} > \text{DL}$

Tokyo -> Fukushima area -> Tokyo
5/May 6-10 May 12/May

- 2nd measurement (SCK-CEN): 13/May/2011
^{131}I, $^{137}\text{Cs} < \text{DL}$

Acute Inhalation, time of intake: 13/03/2011
Intake: $I= 535$ Bq $^{131}\text{I} + 169$ Bq ^{137}Cs
$E(50)= 4E-3$ mSv (^{131}I) + $8E-4$ mSv (^{137}Cs) = $4.8E-3$ mSv
Poland – Contact person: Jakub Osko (NCBJ)

- 7 cases reported,

 - In-vivo Monitoring on March-June 2011
 - NCBJ WBC and IFJ PAN WBC

 - Thyroid counting (Ge detector, shielded room):
 131I detected in 3 persons on March-April 2011,
 range of activities: 3 - 367 Bq in thyroid
 - WBC: 137Cs in 7 persons (25-670 Bq)
 - 134Cs in 3 persons (27-390 Bq)

 - Dose evaluation:
 Case 86: Chronic ingestion, from 11/03 to 20/06/2011
 - $E(50)= 13.8 \, \mu\text{Sv} \, ^{137}\text{Cs} + 11.9 \, \mu\text{Sv} \, ^{134}\text{Cs} = 25.7 \, \mu\text{Sv}
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

- **Czech citizens** – Contact person: Pavel Fojtik (SURO)
 8 cases reported, in Japan from March to July 2011

 - **WBC monitoring** on April-June and September 2011 (WBC in Prague)
 - 6 persons with Activity of $^{137}\text{Cs} > \text{DL}$, range of 30-200 Bq. ^{134}Cs: 70-120 Bq
 - No dose evaluation

 - **Thyroid counting**: detector + collimator, DL = 29 Bq I-131 in thyroid
 - 2 cases with activity of $^{131}\text{I} > \text{DL}$ (monitoring on 6 April). Volunteer rescue workers
 - **Dose Evaluation**: Acute Inhalation 19/May/2011 (1st day in Japan), ^{131}I (Type F)
 - Case B: I = 1500 Bq ^{131}I; $E(50) = 1.15E-2 \text{ mSv}$; Hthyroid= 0.2 mSv
 - Case C: I = 2700 Bq ^{131}I; $E(50) = 2.1E-2 \text{ mSv}$; Hthyroid= 0.4 mSv
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

EURADOS Survey: internally exposed persons

- Hungary:
 - Contact person: Imre Balashazy
 - 6 Hungarian citizens visited Fukushima NPP after the accident
 - Time of intake: 12-13 March 2011, Acute inhalation
 - 2 cases reported:
 - Thyroid counting: (1) 22/3/2011 and (2) 07/04/2011. DL= 50 Bq.
 - Case 1: (1) 424 ± 27 Bq 131I; (2) 153 ± 22 Bq 131I
 - Case 2: (1) 470 ± 26 Bq 131I; (2) 180 ± 22 Bq 131I

- Ukraine:
 - Contact person: Valentyna Vasylenko, Nat Research Centre for Rad Medicine
 - 4 cases reported,
 - WBC: 137Cs: 53 – 361 Bq, on 21-23 March, 1 April and 21 November 2011

- Norway:
 - Contact person: Bjorn Lind (NRPA, Norway)
 - Thyroid counting, portable NaI(Tl) detector. 3 cases with Activity in thyroid > DL
 - DL= 50 Bq I-131
CONCLUSIONS - EURADOS Survey (intakes detected in 176 persons):

- **EURADOS Survey**: Collection of information on the capabilities for in-vivo monitoring and dose assessment in European Internal Dosimetry Laboratories and services, in case of RN emergency

- **Short-lived radionuclides**:
 - ^{132}I and ^{132}Te only detectable few days after the accident.
 - ^{131}I detected up to 2 months after the Fukushima Daiichi NPP accident

- **Main gaps** identified and improvements required:
 - Thyroid counting calibration not always available for in-vivo monitoring
 - In most of cases: just calibration for ADULTS not for children

- **Assumptions for dose calculations**:
 - Acute Inhalation. Few cases: chronic inhalation or ingestion,
 - Time of intake: assumed on 12 March 2011 in many cases

- **European WBC**: similar results of in-vivo monitoring data (WBC and thyroid counting). Same level of Intakes and doses $\text{E}(50)$ and $\text{H}_{\text{thyroid}}$

- **All the Doses $\text{E}(50) < 1 \text{ mSv}$**, no health concern due to intakes of radioiodine and/or radiocaesium
EURADOS SURVEY ON IN-VIVO MONITORING DATA OF EXPOSED FOREIGNERS AT EARLY STAGE AFTER Fukushima Daiichi NPP Accident

Thank you very much for your attention!