

EURADOS IC2022n exercise: Participants' meeting

Coordinator: Marie-Anne Chevallier (IRSN, France)

Members of the Organization Group: Elena Fantuzzi (ENEA, Italy), Michael Hajek (IAEA, Austria), Sabine Mayer (PSI, Switzerland)

IC2022n Participants' meeting: programme

9h - 9h05	Welcome and Organisational Matter	5 min	Marie-Anne CHEVALLIER, IRSN
9h05 - 9h10	Description of the IC2022n Action		Marie-Anne CHEVALLIER, IRSN
9h10 - 9h20 Irradiations at PTB		10 min	Andreas ZIMBAL, PTB
9h20 - 9h30 Irradiations at IRSN		10 min	Amokrane ALLAOUA, IRSN
9h30 - 10h Overview on Results		30 min	Michael HAJEK, IAEA
10h - 10h20 Open discussion		20 min	IC2022n OG
10h20 - 10h30	Final overview / closure	10 min	Elena FANTUZZI, ENEA

Description of the IC2022n exercise

Coordinator: Marie-Anne Chevallier (IRSN, France)

Members of the Organization Group: Elena Fantuzzi (ENEA, Italy), Michael Hajek (IAEA, Austria), Sabine Mayer (PSI, Switzerland)

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

Elena FANTUZZI

ENEA Italy

PAUL SCHERRER INSTITUT

Sabine MAYER

PSI Switzerland

MEMBERS OF THE ORGANISATION GROUP

Michael HAJEK

IAEA Austria Marie-Anne CHEVALLIER

IRSN France

EURADOS WG2 Inter-comparison Exercices

Working Group 2 (WG2) was assigned the task of setting up a self-sustained program of personal dosemeter inter-comparisons in Europe.

Goal of intercomparison exercises

To stimulate Individual Monitoring Services (IMS) to improve the quality of their results and assist with harmonization of the IMS quality control standards.

Organization on a regular basis

- Photons => every 2 years
- Ext, eye lens => every 4 years
- Neutrons => every 5 years started in 2012

IC2022n inter-lab comparison exercise: overview

Similar scope than for the 2 former exercises:

This inter-comparison concerns the performance of neutron dosemeters intended to measure neutron personal dose equivalent $H_p(10)$ provided by individual monitoring services.

The neutron dosemeters may be passive or active but must be used routinely in individual monitoring of exposed workers.

No systems under development are allowed in the inter-comparison.

IC2022n inter-lab comparison exercise: overview

Number of participating systems

	IC2012n	IC2012n	IC2022n
Number of IMSs	31	32	29
Numbers of dosimetry systems fully tested	32	33	31
participant fees	3000 € per dosimetry system	3200 € per dosimetry system	3300 € per dosimetry system
Specificity	2-step procedure	1-step procedure	1-step procedure

IRSN
INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Country	Number of participating system per country		
Italy	6		
France	4		
Austria, Switzerland, Germany, Japan	2		
Belgium, China, Czech Republic, Algeria,			
Finland, United-Kingdom, Israel, India,	1		
Republic of Korea, Poland, Romania, Turkey,	1		
United States			

10 IMSs: 1st time

15 IMSs: 3rd time

For IC2022n:

a total of 29 IMSs participated with 31 dosimetry systems

IC2022n inter-lab comparison exercise: overview

Dosemeter category	Need of A priori information	
	YES	NO
Albedo	8	3
Track	8	12

IC2022n inter-lab comparison exercise: overview

Outlines of IC2022n exercise

As for IC2017n exercise, registration + communication to the OG via an Online Platform

Neutron dosemeter intercomparison IC2022n

Start page . Documents . Login . Registration

♦ Welcome!

Welcome to the EURADOS Neutron dosemeter intercomparison IC2022n!

On this homepage, participants of the Neutron dosemeter intercomparison IC2022n can log in and check the current status of the intercomparison, receive information about the irradiation process, enter their dose values and much more

For the documentation please have a look at the file IC2022n Online Platform Documentation.pdf which is available via the 'Documents' link!

As the deadline for registration is over (Tuesday, 2022-02-15, 23:59 (CET)), registration is no longer possible.

By the way: you can change the language of this homepage in the bottom left

ET DE SÛRETÉ NUCLÉAIRE

With the help of Christian GÄRTNER, from Seibersdorf Labor GmbH, administrator of the platform

IC2022n inter-lab comparison exercise: overview

Outlines of IC2022n exercise

As for IC2017n exercise, registration + communication to the OG via an Online Platform

1-step procedure

IC2022n inter-lab comparison exercise: overview

Outlines of IC2022n exercise

As for IC2017n exercise, registration + communication to the OG via an Online Platform

1-step procedure

Confidentiality Clause signed by all OG

IRSITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Coordination

Preparation of the dosemeters

Coordination

Participant IMSs

Postal mail

IRSN (Cadarache, France)

By train By car

IRSN – coordinator (Fontenay-aux-Roses, France) IRSN – coordinator (Fontenay-aux-Roses, France)

Postal mail

Postal mail

Postal mail

Participant IMSs

Coordination

IRSN (Cadarache, France)

By train

By car

IRSN - coordinator

(Fontenay-aux-Roses, France)

DO NOT X-RAY Postal mail **CAUTION** DO NOT X-RAY

Postal mail

PTB (Braunschweig, Germany)

IRSN - coordinator (Fontenay-aux-Roses, France)

DO NOT X-RAY Postal mail

> **Participant IMSs**

IC2022n inter-lab comparison exercise: overview

Irradiations at accredited irradiation facilities

Quality at irradiation laboratory	Angle of incidence	Η _p (10) (mSv)	Number of dosemeters	Irradiation laboratory
Bare ²⁵² Cf	0°	0.3	4	IRSN
Bare ²⁵² Cf	0°	5	4	IRSN
Bare ²⁵² Cf	30°	0.5	2	IRSN
Bare ²⁵² Cf	45°	0.5	2	IRSN
Bare ²⁴¹ AmBe	0°	1	4	IRSN
Bare ²⁴¹ AmBe	30°	0.5	2	IRSN
252Cf (D ₂ O moderated) at 0°	0°	0.8	4	PTB
Bare ²⁵² Cf source at 0° (0.45 mSv) + additionnal thermal field (0.15 mSv)	0°	0.45 (fast) 0.15 (thermal)	2	РТВ
Un-irradiated dosemeters: spare + background	-	-	4 + 4 4 + 4	PTB IRSN
Fake irradiated dosemeters	-	-	4	Stayed at IRSN coordinator site

IC2022n inter-lab comparison exercise: overview

Radiation field information provided to the participants

Participants were requested to only apply routine procedures as declared in the application form AND confirmed before the coordinator sent back the dosemeters for analysis, where they could also declare whether they needed additional simplified a priori information on the energy distribution of the radiation fields to allow correction of the bare results of neutron personal dosemeters.

	Information provided to participants			
Irradiation conditions	NO a priori information requested	with a priori information requested		
Bare ²⁵² Cf, 0° - 30° - 45°	Irradiated	Bare radionucleide source		
Bare ²⁴¹ AmBe, 0° - 30°	madiated			
252Cf (D ₂ O moderated) at 0°	Irradiated	radionuclide source, significantly moderated		
Bare ²⁵² Cf source at 0° (0.45 mSv) +	irraulateu			
additionnal thermal field (0.15 mSv)				
Un-irradiated dosemeters:	NOT irradiated	NOT irradiated		
spare + background	1101 III dalated	1101 illadiated		
Fake irradiated dosemeters	Irradiated	Bare radionucleide source		



IC2022n inter-lab comparison exercise: overview

Performance criteria

$$0.5 \le \frac{H_{mes} \pm l_{mes}}{H_{ref}} \le 2$$

Trumpet curves according to this equation (for neutrons):

$$0.5 \cdot \left(1 - \frac{2 \cdot H_0 / 1.5}{H_0 / 1.5 + H_{\text{ref}}}\right) \le R \le 2$$

Independent of the energy and the angle of incidence

IC2022n inter-lab comparison exercise: overview

Time schedule

			Date	
	Actions Actions	Provisional	Realized	
2021	Announcement - call for participants and open the registration	15-nov	December 2021	
	Registration closed: Deadline for IMS sending Application Forms	15th Feb	15th Feb	
	Confirmation of participation by OG coordinator	April	April	
	Deadline for IMS sending dosemeters to OG coordinator	May	May	
	Irradiations	Summer	Summer	
	Dosemeters received by coordinator from the irradiation laboratories	end- August end- Augus		
	Dosemeters sent back to IMSs for readout Instructions to the IMSs on the platform	15-sept	15-sept	
	Deadline for IMS to upload results	15th Oct	15th Oct	
	Draft report (certificate) including final and reference results available for download on the online platform	15 Nov	15th Jan	
8	Deadline to confirm results by IMSs	15 Dec	15th Feb	
2023	Participants' meeting Certificates of Participation given to IMSs	EURADOS AM 2023	EURADOS AM 2023	
	Download of Certificate of Participation via online platform available + Certificates of Participation to IMSs via posta mail		1 week more after AM	
2024-25	EURADOS Report + publications	2024-25	2024-25	

IC2022n inter-lab comparison exercise: overview

Certificate of Participation

■ The IMS can use the Certificate of Participation to show compliance with the stated performance to its customers and/or with technical standards

requirements.

				EURHDOS >			
	National Party	************	LIZE-SITS Salaring Consus R:	Certificate of Parti	cipation EURADOS	2022n-SXXX	
socraozz-j cade	Irradiation Laboratory	Hp(18) Betweence value (miv)	A priori Field Information	Radiation Set 8	Hp(18) Participant's ration (m5v)	Sexurk of participant	Ratio-(Participant') value / Beforence value)
F2003/3832-01	859	1.00	beer radionadate countre	Bary CT-752 counts at 0	5.84		1.07
6300E/3832-60	BSN	1.00	beer redionable course	Bary CF 252 course at 0	S 34H S		1,16
52007-2103-61	95N		Set Instance	Ret Wadated	0.00		27 (8)
5303/3333-04	WSH.	0.10	beer radionadide course	Bary O-252 sauce and	0.15		3 300
1200/2012-05	MSN.	0.30	been radionadide countre	fine O'252 small at 9"	0.34		1.0
D001/3512-06	MSN		bare radionadide country	Not tradunist (fake')	6.00		7. (2)
5000/2432-07	856	1.00	beer radionacide country	Here Nev-Re source at 6"	1.04		3.00
52001/2022-08	. PTW	111111	not irradiated	Not irradiated	0.00		
1209/2022-09	BSN	1.00	bare radionadale course	Bare Art- Be source at D'	1.12		1.0
1300/3122-10	RSH	5.00	bare radioludide source	Base CF-252 source at 0"	5.93		(1) (1) (1)
1000/3802-11	FTR	7.5	not tradition	Not oradiated	0.00		75 75 01515 5

Exposure Bookstine Desimetry Circum

CHICAROS

IC2022n inter-lab comparison exercise: overview

Conclusions

- 3rd neutron dosimetry intercomparison within EURADOS organized 5 years after the first one as planned
- 2nd time online platform was used for the neutron intercomparison
- 1 irradiation with mixed field
- 1-step procedure for delivering results was chosen instead of a 2-step procedure
- additional simplified a priori information on the energy distribution was given only to those participants who stated that they need it
- number of participating systems was almost the same as in IC2012n and IC2017n
 (IC2012n: 34 systems ← → IC2017n: 33 systems ← → IC2022: 31 systems)
- 10 IMSs participated for the 1st time, 15 IMSs for the 3rd time

IC2022n inter-lab comparison exercise: overview

- Conclusions (bis)
- Exercises such as IC2017n are important for informing the radiation protection community about the present state of the art in neutron dosimetry.
- They unearth potential difficulties and provide the dosimetry services with opportunities to demonstrate the capabilities of their dosemeters and any recent improvements they have made.

IC2022n inter-lab comparison exercise: overview

During all IC process: many online meetings

IC2022n inter-lab comparison exercise

Please let us know your suggestions or claims by e-mail to:

ic2022n@eurados-intercomparison.org