

EURADOS Intercomparison 2022 for Neutron Dosemeters Overview of Results

M-A Chevallier¹, E Fantuzzi², <u>M Hajek³ & S Mayer⁴</u>

¹ Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France ² Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy ³ International Atomic Energy Agency, Vienna, Austria

⁴ Paul Scherrer Institute, Villigen, Switzerland

Outline

- Reminder of radiation qualities
- Categories of dosemeters
- Overview of participants' results
- Results for specific radiation qualities

Reminder – Radiation Qualities

No.	Radiation quality	H _p (10)	[mSv]
1	Bare ²⁵² Cf source at 0°	0.3	5.0
2	Bare ²⁵² Cf source at 30°	0.5	5
3	Bare ²⁵² Cf source at 45°	0.5	5
4	D ₂ O-moderated ²⁵² Cf source at 0° & 1 mm Cd	0.8	3
5	Bare ²⁵² Cf source (0.45 mSv) & thermal neutron field (0.15 mSv)	0.6	5
6	Bare ²⁴¹ Am-Be at 0°	1.0)
7	Bare ²⁴¹ Am-Be at 30°	0.5	5

Categories of Dosemeters

31 dosimetry systems from 29 individual monitoring services in 19 countries

20 track systems

- 10 etched track detectors for fast neutrons with thermal neutron converters
- 8 etched track detectors for fast neutrons with thermal neutron sensor
- 2 etched track detectors for fast neutrons without evidence of thermal sensor

11 albedo systems

- 5 thermoluminescence detectors with boron-loaded shield
- 4 thermoluminescence detectors with cadmium shield
- 1 thermoluminescence detector lacking information on shielding
- 1 active personal dosemeter

To ease identification OG reassigned dosemeters registered under types "other" or "combination"

Overall Statistics	IAEA
Irradiated dosemeters	744
Reported values	744
	R = G/H _{ref}
Arithmetic mean	1.34
Median	0.94
Standard deviation	3.04
2.5 th -percentile	0.00
97.5 th -percentile	8.26

Bare ²⁴¹Am-Be Source at $0^{\circ} - 1.0 \text{ mSv}$

Bare ²⁴¹Am-Be Source at 30° – 0.5 mSv

Mean and Standard Deviation of Response

Padiation quality	H _p (10) All		Albedo		Track		
Radiation quality	[mSv]	R	σ	R	σ	R	σ
$P_{ave}^{252}Cf_{at} O^{9}$	0.3	1.14	0.57	0.86	0.52	1.29	0.55
Bare 202CT at 0	5.0	0.92	0.29	0.85	0.37	0.95	0.23
Bare ²⁵² Cf at 30°	0.5	0.79	0.33	0.75	0.39	0.82	0.29
Bare ²⁵² Cf at 45°	0.5	0.66	0.28	0.72	0.35	0.63	0.24
D_2O -mod. ²⁵² Cf at 0°	0.8	1.96	2.68	3.68	3.96	1.01	0.34
Bare ²⁵² Cf & thermal field	0.6	4.06	8.79	8.18	13.86	1.79	1.56
Bare 241 Am-Be at 0°	1.0	0.79	0.30	0.72	0.37	0.82	0.25
Bare 241 Am-Be at 30 $^{\circ}$	0.5	0.75	0.32	0.72	0.36	0.76	0.30

Distribution of Response

EURADOS

Test for False Positive Response — Unirradiated

Reporting Levels

20 track systems

- 0.1 mSv (11 IMSs), 0.15 mSv (1), 0.2 mSv (4), 0.3 mSv (2) and 0.5 mSv (2)

11 albedo systems

- 0.1 mSv (4 IMSs), 0.2 mSv (1), 0.3 mSv (1) and DL (1)

Conclusions

- Applying approval criterion and performance limits of ISO 14146:2018,
 5 (out of 11) albedo and 16 (out of 20) track systems passed with not more than two outliers
- Significant overresponse of albedo systems to moderated and thermal neutrons due to very soft field and/or nearly isotropic distribution
 - Some albedo systems responded within performance limits because of improved side shielding or correction based on ratio of readings behind front and albedo window
- Track systems generally provided better estimate of neutron personal dose equivalent at lower uncertainty
 - Track detectors tend to slightly underestimate neutron personal dose equivalent at higher angles of incidence

Please let us know your suggestions or claims by e-mail to coordinator@ic2022n.org

