

PAUL SCHERRER INSTITUT				
	-	_	Π	
-	-			

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Ciemat

DETERMINATION OF DOSEMETER RESPONSE IN TERMS OF ICRU 95 OPERATIONAL QUANTITIES

M-A Chevallier¹, E Fantuzzi², M Hajek³ & <u>S Mayer^{4,}</u> W. Dobrzynska⁵, M. Figel⁶, T. Grimbergen⁷, A.M. Romero⁸, H. Stadtmann⁹, A. McWhan¹⁰

¹ Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France

- ² Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
- ³ International Atomic Energy Agency, Vienna, Austria
- ⁴ Paul Scherrer Institute, Villigen, Switzerland
- ⁵ Cavendish Nuclear Limited, A11 Berkeley ADS, Berkeley Centre, Berkeley, Gloucestershire, GL13 9FB, UK
- ⁶ Mirion Technologies (AWST) GmbH, Otto-Hahn-Ring 6, D-81739 München, Germany
- ⁷ Mirion Dosimetry Services, PO Box 60067, 6800 JB Arnhem, The Netherlands
- ⁸ CIEMAT, Radiation Dosimetry, Avda Complutense 40, 28040-Madrid, Spain
- ⁹ Seibersdorf Labor GmbH, A-2444 Seibersdorf, Austria
- ¹⁰ Charthouse Data Management Limited, Unit A17 Admiralty Park, Poole, BH16 6HX, UK

Learning Network – 13rd June 2023, EURADOS AM - Porto, Portugal

OUTLINE

- **Comparison of old and new quantities**
- Conversion coefficients
- Assessment/determination? of dosemeter response in terms of ICRU 95 operational quantities
- Literature

DEFINITIONS OF THE OPERATIONAL QUANTITIES

ICRU Report 39/51 Personal dose equivalent, H_p(10)

 $H_{\rm p}(10)$ is defined below a specific point in the body or on a calibration phantom.

 $H_{\rm p}(10)$ is defined in ICRU 4-element soft tissue.

d = 10 mm for penetrating radiationsd = 0.07 mm for the skind = 3 mm for the eye

ICRU Report 95 Personal dose, H_p

 $H_{\rm p}$ is defined at a point on the body.

 $H_{\rm p}$ is the product of the fluence and the appropriate conversion coefficient.

No fixed depth of a maximum (energy dependent).

CONVERSION COEFFICIENTS

ICRU Report 57 / ICRP Report 74 Personal dose equivalent, H_p(10)

Conversion coefficients have been calculated in ICRU slab in kerma approximation.

Conversion coefficients maximum energies: 10 MeV for photons and electrons 20 MeV for neutrons Conversion coefficients have been calculated considering the E/ϕ for the reference adult voxel phantoms at different incident angles with secondary charged particle transport.

ICRU Report 95

Personal dose, H_p

Conversion coefficients maximum energies: **1 GeV for photons, neutrons, electrons, positrons, protons, negative muons, positive muons, negative pions, positive pions,** ⁴He ions

Figure A.2.1a Conversion coefficients from photon fluence to personal dose (Endo⁵, 2017; ICRP, 2010).

Figure A.2.2 Conversion coefficients from neutron fluence to personal dose (Endo, 2017; ICRP, 2010).

CONVERSION COEFFICIENTS: COMPARISON

Figure 4.3 Comparison of incident photons of conversion coefficients from fluence to personal dose equivalent at 10 mm depth, $h_p(10,\varphi)$, taken from ICRU Report 57 (1998) which used the kerma approximation method, shown as a ratio to the recommended values of $h_p(\varphi)$ (Endo, 2017).

Figure 4.5 Comparison of incident neutrons of conversion coefficients from fluence to personal dose equivalent at 10 mm depth, $h_p(10,\varphi)$, taken from ICRU Report 57 (1998), shown as a ratio to the recommended values of $h_p(\varphi)$ (Endo, 2017).

CONVERSION COEFFICIENTS: COMPARISON AT 0° INCIDENCE

Figure 1. Effective dose per unit fluence in AP orientation E(AP) (continuous line), personal dose equivalent $H_p(10,0^0)$ per unit fluence as published, calculated in kerma-approximation (dotted line), personal dose equivalent $H_p(10,0^0)$ per unit fluence calculated with full electron transport (dashed line). On this scale, the corresponding curves for ambient dose equivalent $H^*(10)$ are indistinguishable from the ones for $H_{\rm n}(10,0^0)$.

T. Otto 2019 JINST 14 P11011

רטוואפן צוטוו נטפווונופוור

ASSESSMENT OF DOSEMETER RESPONSE IN TERMS OF ICRU 95 OPERATIONAL QUANTITIES

The response of the dosimeter is the ratio of the value indicated by the dosimeter, *G*, over the conventional quantity value, *C*.

$$R = \frac{G}{C}$$

Provided that the method of irradiations for the old and the recommended quantities is unchanged and the response of the dosimeter to the previous quantity $H_p(10)$ is known, R can be calculated as:

$$R = \frac{G}{C_{old}} \frac{C_{old}}{C} = R_{old} \frac{C_{old}}{C} = R_{old} \frac{h_{old}}{h} = R_{old} \frac{h_{p}(10)_{, ISO 8529-3}}{h_{p, ICRU 95}}$$

Reciprocal is listed for neutron radionuclide sources in EURADOS report – Evaluation of the Impact of the New ICRU Operational Quantities and Recommendations for their Practical Application

CONVERSION COEFFICIENTS FOR IC2022 PHOTON IRRADIATIONS CONDITIONS

No.	Radiation quality	H _p (10) of IC2022n [mSv]	h _{р ICRU 95} / h _p (10) _{ISO 4037-3}	h _p (10) _{ISO 4037-3} / h _{p ICRU 95}
1	S-Cs 0°	2.4 - 9.0	0.840	1.191
2	S-Co 0°	8 - 360	0.838	1.193
3	N-40 0°	3.7 - 6.0	0.432	2.317
4	W-80 0°	4.8 - 7.2	0.665	1.503
5	W-80 60°	4.8 – 7.2	0.614	1.628
6	Mixed N-40 / S-Cs 0°: N-40	1.4 - 2.4	0.432	1.193
7	Mixed N-40 / S-Cs 0°: S-Cs	1.2 – 1.8	0.840	1.191

For true $H_p(10)$ values, see your certificate by the irradiation lab

Rolf Behrens and Thomas Otto, *Conversion coefficients from total air* kerma to the newly proposed ICRU/ICRP operational quantities for radiation protection for photon reference radiation qualities 2022 J. Radiol. Prot. **42** 011519

CONVERSION COEFFICIENTS FOR IC2022 NEUTRON IRRADIATIONS CONDITIONS

No.	Radiation quality	H _p (10) of IC2022n [mSv]	h _p , _{ICRU 95} / h _p (10) _{ISO 8529-3}	h _p (10) _{ISO 8529-3} / h _p , _{ICRU 95}
1	Bare ²⁵² Cf source at 0°	0.3 5.0	0.880	1.214
2	Bare ²⁵² Cf source at 30°	0.5	0.824	1.259
3	Bare ²⁵² Cf source at 45°	0.5	0.794	1.203
4	D ₂ O-moderated ²⁵² Cf source at 0° & 1 mm Cd	0.8	0.831	1.136
5	Bare ²⁵² Cf source (0.45 mSv) & thermal neutron field (0.15 mSv)	0.6	0.880 (0.45 mSv) & 0.531*	1.214 & 2.85*
6	Bare ²⁴¹ Am-Be at 0°	1.0	1.039	0.962
7	Bare ²⁴¹ Am-Be at 30°	0.5	0.972	1.029
				

listed in EURADOS report – Evaluation of the Impact of the New ICRU Operational Quantities

*Calculated ratio for E_n =2.53E-8 MeV

and Recommendations for their Practical Application

LITERATURE

- ICRU Report 95 Operational Quantities for External Radiation Exposure Journal of the ICRU, 2020, Vol. 20(1) 14–16
- P. Gilvin, M. Caresana, J.-F. Bottollier-Depois, V. Chumak, I. Clairand, J. Eakins, P. Ferrari, O. Hupe, P. Olko, A. Röttger, R.J. Tanner, F. Vanhavere, E. Bakhanova, V. Bandalo, D. Ekendahl, H. Hödlmoser, D. Matthiä, G. Reitz, M. Latocha, P. Beck, D. Thomas and R. Behrens. "Evaluation of the Impact of the New ICRU Operational Quantities and Recommendations for their Practical Application", EURADOS, July 2022.

ISSN 2226-8057 ISBN 978-3-943701-32-6 DOI: 10.12760/yxy4-5q82

PAUL SCHERRER INSTITUT				
	Ι	_	Π	
-	-			

