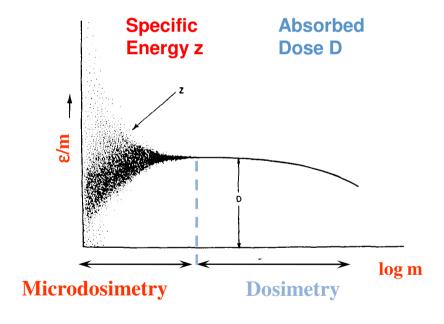


Enhancing nuclear safety

Micro- and nanodosimetric calculations using the Geant4-DNA Monte Carlo code

EURADOS Winter school:


"Status and Future
Perspectives of
Computational Micro- and
Nanodosimetry"

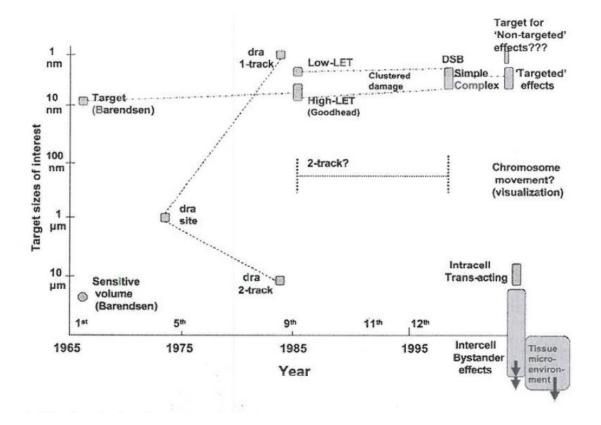
C. Villagrasa. IRSN (Institut de Radioprotection et de sûreté nucléaire, France). On behalf of the Geant4-DNA collaboration.

Context and Motivation

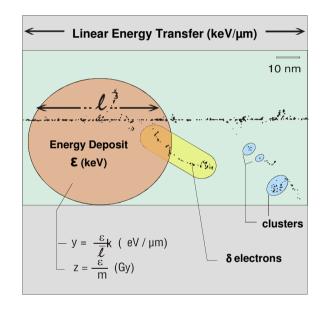
Since its inception, the purpose of microdosimetry has been the study of the stochastic character in the energy deposition by ionizing radiation and its consequences in the biological response mechanism.

The stochastic character becomes more relevant when the target volume decreases

Which is the target volume relevant for studying the biological response?

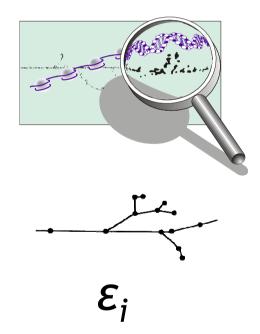

Cellular scale: micrometer

Sub-cellular scale (ex. DNA): nanometer

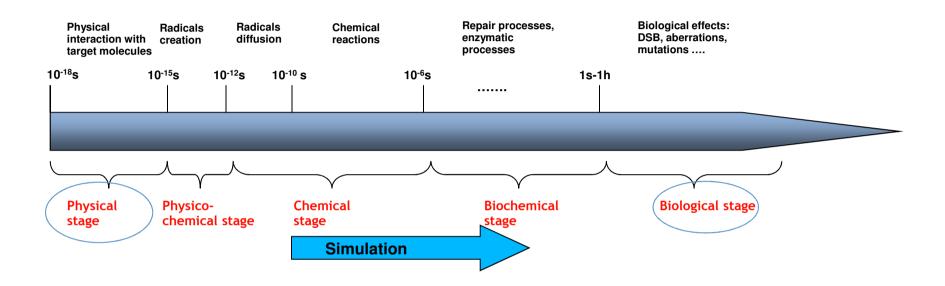

Context and Motivation

Evolution of the target size studied in the different microdosimetry symposiums

(D.T. Goodhead Rad. Prot. Dosim. 2006)



Micro- or nanodosimetry- > Two complementary formalisms



3

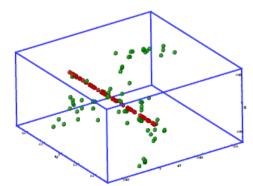
Integrated response of a a critical biological site or target

Track structure investigation

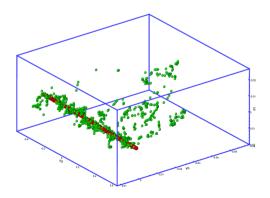
Radioprotection: Describing the first steps of the interaction between ionizing radiation and biological targets would allow improving the risk evaluation of secondary effects in both low and high dose regimes.

Monte Carlo method for the Physical Stage

Monte Carlo calculations are a well adapted method to simulate the stochastic characteristics of the physical stage


Monte Carlo Track structure simulation at nanometric level

Physical models or experimental data for cross-section determination of the different physical interactions with the target material


$$\sigma(Z, E, T_{cut}) = \int_{T_{cut}}^{T_{max}} \frac{d\sigma(Z, E, T)}{dT} dT$$

Tcut cut energy for secondary particle (electrons) creation and transportation

Tcut: 250 eV

Tcut-> some eV

Tcut: 15 eV

Dedicated codes for Radiobiology response modelling

Dedicated codes for nanodosimetric calculations exist fulfilling these requirements:

Code	particle	Energy range	Cross-section database	Reference
CPA100	e-	≥10 eV-100 eV e-	Wat. (l)	Terrissol and Beaudre, 1990
DELTA	e-	≥10 eV-10 keVe-	Wat. (v)	Zaider et al. (1983)
ETRACK	e-, p, α	≥ 10 eV-10 keVe-	Wat. (v)	Ito (1987)
KURBUC	e-	≥ 10 eV-10MeVe-	Wat. (v)	Uehara et al. (1993)
LEEPS	e-, e+	0.1-100 keV	Many materials	Fernandez-Varea et al. (1996)
LEPHIST	Р	≥ 1 keV-1MeV	Wat. (v)	Uehara et al. (1993)
LEAHIST	α	≥ 1 keV/u-2MeV/u	Wat. (v)	Uehara and Nikjoo (2002a)
MC4	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/u	Wat. (v,l)	Emfietzoglou et al. (2003)
NOTRE DAME	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/u	Wat. (v,l)	Pimblott et al. (1990)
OREC	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/u	Wat. (v,l)	Turner et al. (1983)
PARTRAC	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/u	Wat. (v,l)	Friedland et al. (2003)
PITS04	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/u	Wat. (l)	Wilson et al. (2004)
PITS99	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/ u	Wat. (v)	Wilson and Nikjoo (1999)
SHERBROOKE	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/u	Wat. (v,l)	Cobut et al. (2004)
STBRGEN	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/ u	Wat. (v,l)	Chatterjee and Holley (1993)
TRION	e-, ions	\geq 10 eV e-, ions \geq 0.3MeV/ u	Wat. (v,l)	Lappa et al. (1993)
TRACEL	e-, ion	\geq 10 eV e-, ions \geq 0.3MeV/u	Wat. (v,l)	Tomita et al. (1997)

Source: "Trackstructure codes in radiation research", Nikjoo et al.,Rad. Meas. 41 (2006)

Here, we present the capabilities of the Geant4 Monte Carlo code for micro and nanodosimetric calculations-> the Geant4-DNA project

The Geant4-DNA project: a part of Geant4

GEometry ANd Tracking

Geant4: a set of libraries to simulate interactions of particles with matter (not a user code)

Initiated by CERN in 1994 for HEP (LHC), successor of Geant3 (20 years)

Now developed by an international collaboration (~100 members)

Object-Oriented technology (C++) -> Extensibility

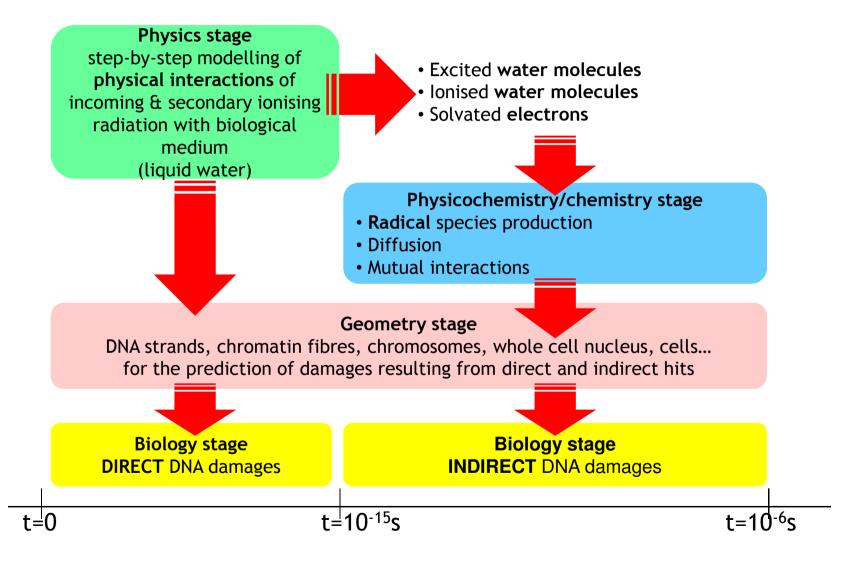
Entirely open source and free

Constantly updated -> Two public releases / year

Geant4: simulation of a particle physics experiment

- Define a flexible geometry
- Model interaction processes (electromagnetic, hadronic)
- Generate initial particles and follow them within the geometry
- Save physics quantities and analyze them

http://www.geant4.org



The Geant4-DNA project: a part of Geant4

- **>Objective**: adapt the general purpose Geant4 Monte Carlo toolkit for the simulation of interactions of radiation with biological systems at the cellular and DNA level.
- ❖Initiated in 2001 by Dr. Petteri Nieminen at the ESA (European Space Agency) with the aim of providing an open source access to the scientific community that can be easily upgraded & improved
- First prototypes of physics models were added to Geant4 in 2007
- ❖Currently an on-going interdisciplinary activity of the Geant4 collaboration « low energy electromagnetic physics » working group → Coordinated by S. Incerti CNRS/IN2P3 since 2008

http://geant4-dna.org

The Geant4-DNA project

Physical stage: Physics models available in Geant4-DNA

General features

- Electron transport can reach the very low energy domain down to electron thermalization
 Sub-excitation electrons (below ~9 eV) can undergo vibrational excitation, attachment and elastic scattering
- Purely discrete
 - •Simulate all elementary interactions on an event-by-event basis
 - No condensed history approximation
- Models can be purely analytical and/or use interpolated data tables For eg. computation of integral cross sections
- They use the same software design as all electromagnetic models available in Geant4 (« standard » and « low energy » EM models)

Allows the combination of processes (multi-scale design)

Physical stage: Physics models available in Geant4-DNA

General features

The target composition problem:

Geant4-DNA physics models are applicable currently only to liquid water:

- Nevertheless, liquid water is a fundamental component of biological matter and, at micrometric scale, the energy absorbed by liquid water is a good representation of that in biological matter
- Experimental data on water vapor cover a broad energy range with high accuracy but phase effects for low energy electron transport are important to take into account.
- Only few data on the liquid water dialectric function in the optical limit .
- Some experimental data on biological components (amino-bases, sugar, etc) are now available and theoretical models are being developed

In order to take into account the other components of biological matter at nanometric scale, Geant4-DNA next releases will propose:

- ➤ Implementation of the new experimental cross sections for DNA constituents from PTB (BioQuaRT project)
- ➤ Cross sections using the classical trajectory Monte Carlo simulation (CTMC) approach (dec. 2013 release) See Champion et al. PMB53, 2008, N41; PRA 79, 2009
- Cross sections based on the CDW-EIS (continuum-distorted wave eikonal-initial-state) method for interactions on DNA components

Overview of the physic models for liquid water (9.6)

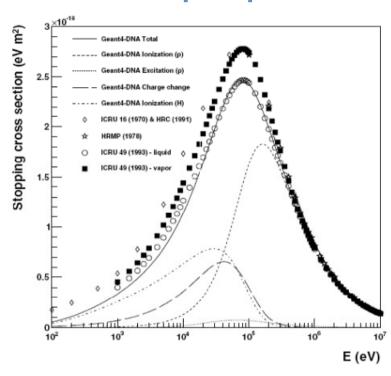
Electrons

- Elastic scattering
 - Screened Rutherford and Brenner-Zaider below 200 eV
 - Champion's approach (partial wave framework,
 3 contributions to the interaction potential)
- lonisation
 - 5 levels for H₂O
 - Dielectric formalism & FBA using Heller optical data up to 1 MeV, and low energy corrections
- Excitation
 - 5 levels for H₂O
 - Dielectric formalism & FBA using Heller optical data and semi-empirical low energy corrections
- Vib. Excitation
 - Michaud et al. xs measurements in amorphous ice
 - Factor 2 to account for phase effect
- Dissociative attachment
 - Melton et al. xs measurements

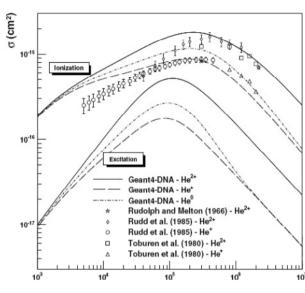
Photons

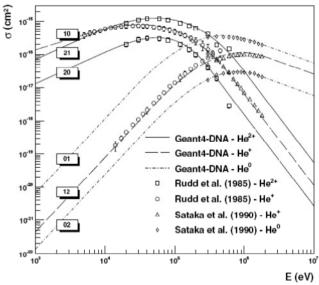
from EM « standard » and « low energy »

Protons & H

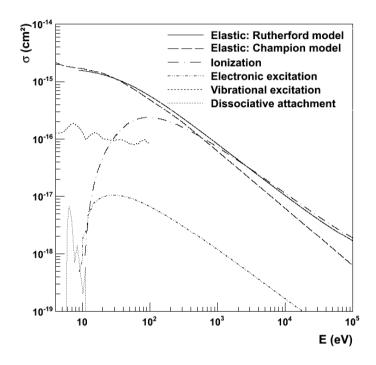

- Excitation
 - Miller & Green speed scaling of eexcitation at low energies and Born and Bethe theories above 500 keV
- Ionisation
 - Rudd semi-empirical approach by Dingfelder et al. and Born and Bethe theories & dielectric formalism above 500 keV (relativistic + Fermi density)
- Charge change
 - Analytical parametrizations by Dingfelder et al.
- He⁰, He⁺, He²⁺
 - Excitation and ionisation
 - Speed and effective charge scaling from protons by Dingfelder et al.,
 - Charge change
 - Semi-empirical models from Dingfelder et al.
- C, N, O, Fe
 - lonisation
 - Speed scaling and global effective charge by Booth and Grant

Overview of Geant4-DNA physics processes and models available in Geant4 9.6 for liquid water


Particles	e-	р	н	He ⁺⁺ , He ⁺ , He ⁰	C, N, O, Fe,
Elastic scattering	> 9 eV - 1 MeV Screened Rutherford >7.4 eV - 1 MeV Champion	-	-	-	-
Excitation	9 eV – 1 MeV Born	10 eV - 500 keV Miller Green 500 keV - 100 MeV Born	10 eV - 500 keV Miller Green	Effective charge scaling from same models as for proton 1 keV – 400 MeV	-
Charge Change	-	100 eV - 10 MeV Dingfelder	100 eV - 10 MeV Dingfelder		-
Ionisation	11 eV – 1 MeV Born	100 eV - 500 keV Rudd 500 keV - 100 MeV Born	100 eV - 100 MeV Rudd		Effective charge scaling 0.5 MeV/u – 10 ⁶ MeV/u
Vibrational excitation	2 – 100 eV Michaud et al.				
Attachment	4 – 13 eV Melton	See full details in Med. Phys. 37 (2010) 4692-4708 and Appl. Radiat. Isot. 69 (2011) 220-226			


EURADOS Winter School: « micro and nanodosimetric calculations with Geant4-DNA »

Protons and alpha processes cross-sections in liquid water



- Each physics process can use one our several complementary or alternative models
- Each models provides the total cross section and a computation of the final state: kinematics, secondary particles involved

Electron processes cross-sections in liquid water

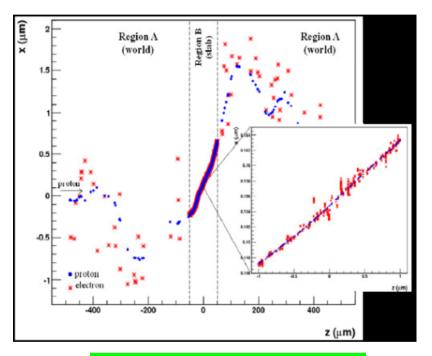
Electron process cross sections cover energy range up to 1 MeV down to either

- 7.4 eV for the Champion elastic scattering model (default model)
- or 9 eV for the Screened Rutherford elastic scattering model

The Multiscale approach

Combination of processes for different geometric regions

Particularly useful for gamma irradiations


Gammas (Livermore or Penelope(2008) models for):

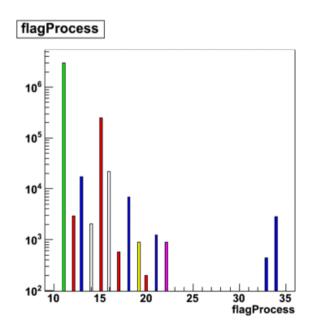
- ➤ Photoelectric effect
- ➤ Compton scattering
- ➤ Gamma conversion
- ➤ Rayleigh scattering
- > + fluorescence emission or Auger electron production

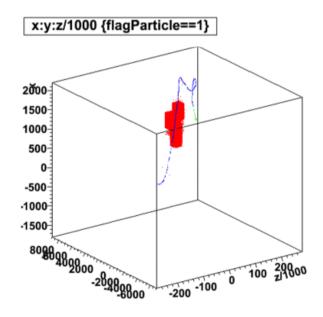
Electrons:

Outside the target volume

- ➤ Moller-Bhabha model for ionization
- >Standard Bremsstrahlung model
- ➤ Standard Multiple Scattering model

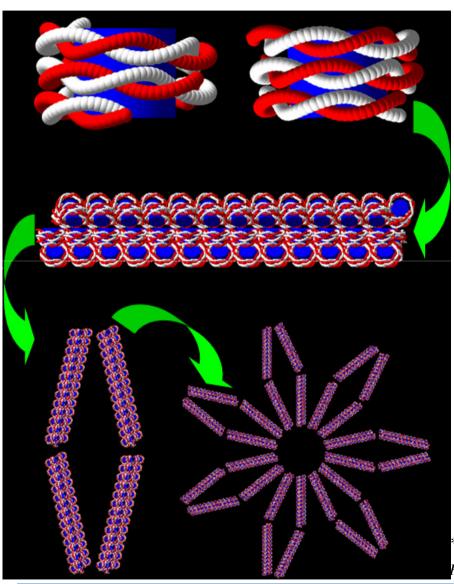
See Prog. Nucl. Sci. Tec. 2 (2011) 898-903


Inside the target volume


- >G4DNA elastic collisions (Champion Elastic Model),
- >G4DNA ionization (Born Ionization model),
- >G4DNA excitation (Born Excitation Model),
- ≽electron capture T_e < 9 eV
 </p>

The microdosimetry Geant4 "advance example"

Purpose:


- Explain to users how to use Geant4 very low energy electromagnetic processes for microdosimetry
- Calculation of track structure of a He+ particle in liquid water, ROOT macro provided for data analysis

The target geometry

M. Dos Santos PhD. Work (IRSN)

Nucleosome

- 200 bp / nucleosome
- DNA diameter = 2.16 nm
- Histone = cylinder of 6.5 nm in diameter and 5.7 nm in height

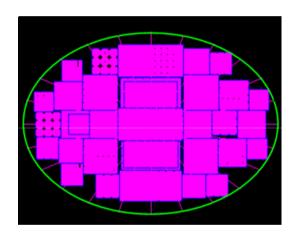
Chromatin fiber

- 90 nucleosomes / fiber
- 7 nucleosomes / turn
- | = 31 nm
- L = 161 nm

Chromatin fiber loop

- 4 fibers / loop assembled in a diamond shape
- 7 loops to form a "flower"*

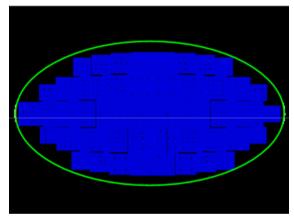
* W. Friedland & al, Simulation of DNA damage after Proton irradiation, Radiation Research 59 (2003), 401-410.


The target geometry

M. Dos Santos PhD. Work (IRSN)

Implementation of two cell nuclei in GO/G1 phase (purpose: link with biological experimental data of γ -H2AX foci)

Chromatin density sensibility study


Fibroblast cell nucleus

Per nucleus:

- 23 pairs of chromosomes
- 11875 flowers or 83125 loops
- 332 500 chromatin fibers
- 29 925 000 nucleosomes
- ~ 6 Gbp

Endothelium cell nucleus

- Nucleus -> ellipsoid
- Dimensions: 19.7 * 14.2 *
 5 μm³
- $V = 732 \mu m^3$
- 0.42 % of DNA / nucleus

- Nucleus -> ellipsoid
- Dimensions: 19 * 11 * 2 μm³
- $V = 219 \mu m^3$
- 1.43 % of DNA / nucleus

Track analysis

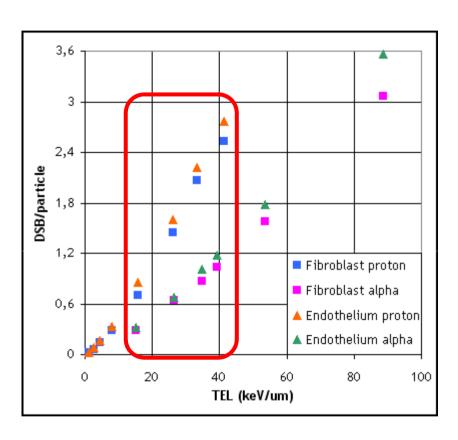
Density Based Spatial Clustering of Applications with Noise. 2nd Int. Conf. On Knowledge Discovery and Data Mining (Martin Ester et al. - 1998)

- > Powerful method to:
 - > Reveal points belonging to a same group
 - showing the links between them
- ➤ Some parameters have to be defined:
 - Minimum number of points to form a cluster: 2
 - Maximal radius : 3.2 nm (~ 10bp)
 - Minimal Energy per point: 8 eV

- p belongs to the cluster centered in q if dist(p,q) ≤ radius (parameter)
- Clusters can merge if they are connected by a central cluster

Track analysis

• Currently, It is not possible to calculate the number of SSB or DSB as indirect effects are missing (in progress) and thus an absolute normalization is not yet possible

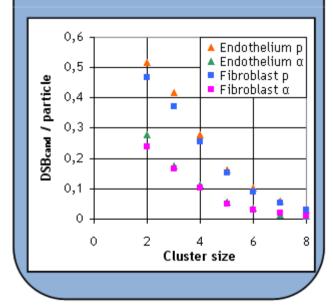

Type of clusters and relation to potential DAN damages

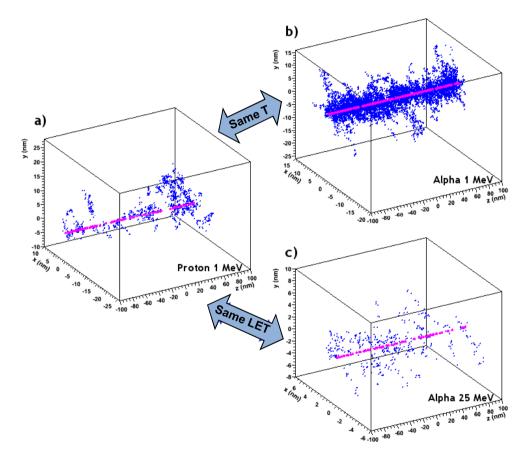
- Isolated interaction points:
 - » Interaction points located at more than 3.2 nm of any other point
- Simple cluster:
 - » Interaction points located on the same strand and separated by less than 3.2 nm
- Complex cluster:
 - » Interaction points where at least one of them is located on a different strand and separated by less than 3.2 nm

DSB_{cand}

SSB_{cand}

Some results using the target geometry and DBSCAN


M. Dos Santos PhD. Work (IRSN) accepted in NIM B (2013)


- **对** of DSB_{cand} with **对** LET
- More clusters are produced on teh "endothelium" cell nuclei (more compacted DNA)
- For similar LET, more damages are created by p than alpha particles

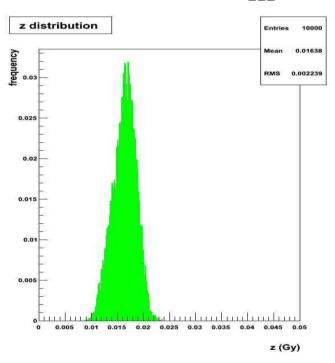
Some results using the target geometry and DBSCAN

LET ~ 26 keV/ μ m

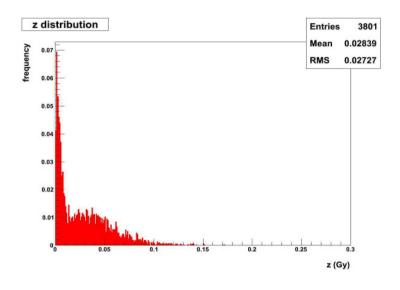
Cluster	Endothelium		Fibroblast	
size	Proton	Alpha	Proton	Alpha
2	0.518	0.278	0.469	0.237
3	0.419	0.175	0.373	0.165
4	0.384	0.112	0.254	0.102
5	0.260	0.058	0.151	0.051
6	0.156	0.035	0.089	0.029
7	0.095	0.0139	0.052	0.021
8	0.057	0.008	0.030	0.011

M. Dos Santos PhD. Work (IRSN) accepted in NIM B (2013)

Micro and nanodosimetric calculations

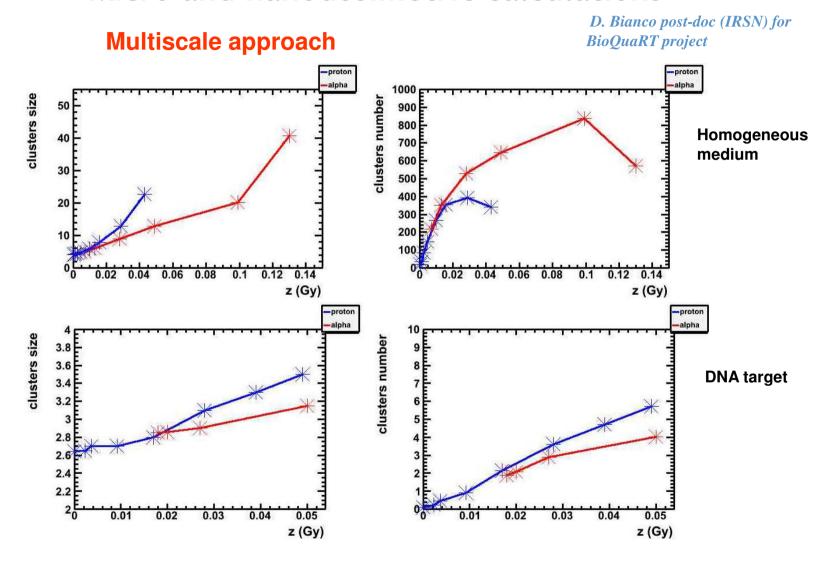

Multiscale approach

D. Bianco post-doc (IRSN) for BioQuaRT project

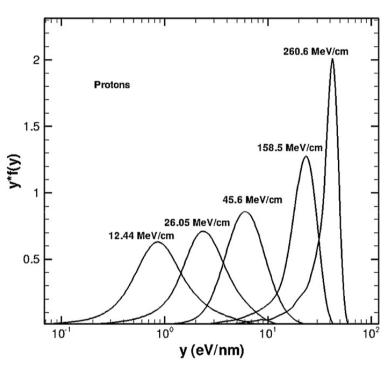

Specific energy (stochastic variable)

$$z = \frac{\varepsilon}{m}$$

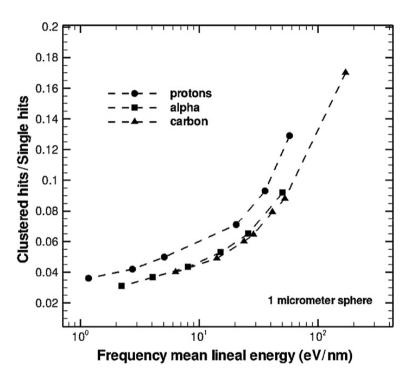
Mean specific energy $\int z f(z;D) dz = z$ (non stochastic)



Z distribution for 1 MeV p traversing the cell nucleus ellipsoid


Z distribution for 1 MeV p only backbone contribution (using target geometry)-> direct effects

Micro and nanodosimetric calculations


Micro and nanodosimetric calculations

Multiscale approach

Microdosimetric spectra can be calculated for p, alpha particles and light ions for different target sizes (here 1 µm diameter sphere)

>See Z. Francis et al. Phys. Med. Biol. 57 (2012)

A study of the clustered energy deposits respect to the frequency mean lineal energy give us quantitative information on the different effect depending on the radiation quality

M. Karamitros PhD. Work (23/11/2012, CENBG)

Chemical stage Physico-chemical stage $t=10^{-15}s$ $t=10^{-12}s$ EURADOS Winter School: « micro and nanodosimetric calculations with Geant4-DNA »

M. Karamitros PhD. Work (23/11/2012, CENBG)

Physico-chemical stage

• Dissociation:

$$H_2O^*/^+$$
 $(H_3O^+, ^{\circ}OH, e_{aq}, H, H_2)$

 Thermalization of the products down to their energy of diffusion at equilibrium.

lonised molecules convert into :

$$H_2O^+ + H_2O \rightarrow H_3O^+ + OH^-$$

Excited molecules relax or dissociate

	Process	Decay channel	Fraction (%)
Ionisation (H ₂ O ⁺)			
1b ₁ , 3a ₁ , 1b ₂ , 2a ₁ , K	Dissociative decay	$H_3O^+ + {}^{\bullet}OH$	100
Excitation (H ₂ O*)			
A^1B^1	Dissociative decay	•OH + H•	65
	Relaxation	$H_2O + \Delta E$	35
B^1A^1	Auto-ionisation	$H_3O^+ + {}^{\bullet}OH + e_{aq}^-$	55
	Dissociative decay	$H_2 + {}^{\bullet}O^{\bullet}$	15
	Relaxation	$H_2O + \Delta E$	30
Ryd, diff bands	Auto-ionisation	$H_3O^+ + {}^{\bullet}OH + e_{aq}^-$	50
	Relaxation	$H_2O + \Delta E$	50

Kreipl et al, Radiat Environ Biophys, 2009

M. Karamitros PhD. Work (23/11/2012, CENBG)

Physico-chemical stage

Chemical stage

Step By Step (SBS) model

The probability of encounter is evaluated after each time step.

Molecular species & diffusion

Species	Diffusion coefficient D (10 ⁻⁹ m ² s ⁻¹)
e ⁻ aq	4.9
•OH	2.8
H•	7.0
H ₃ O ⁺	9.0
H ₂	4.8
OH-	5.0
H ₂ O ₂	2.3

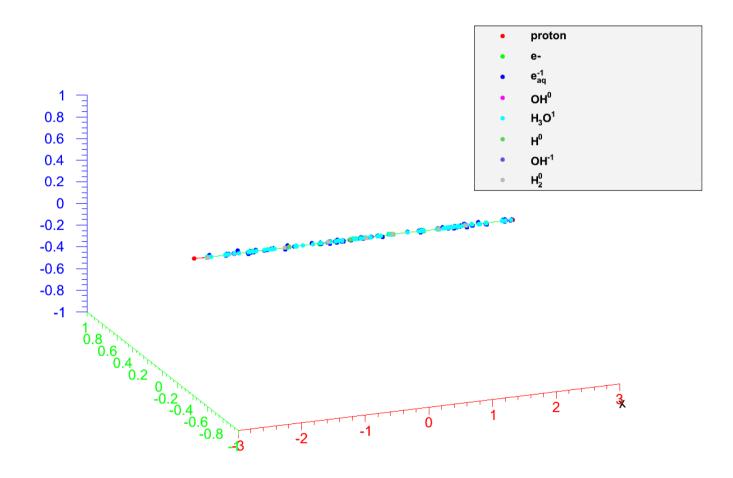
Brownian diffusion $\langle R \rangle = \sqrt{6 \cdot D \cdot \Delta t}$

Time interval (s)	Δt (ps)
Until 10 ⁻¹¹	0.1
10 ⁻¹¹ -10 ⁻¹⁰	1
10 ⁻¹⁰ -10 ⁻⁹	3
10 ⁻⁹ -10 ⁻⁸	10
Above 10 ⁻⁸	100

M. Karamitros PhD. Work (23/11/2012, CENBG)

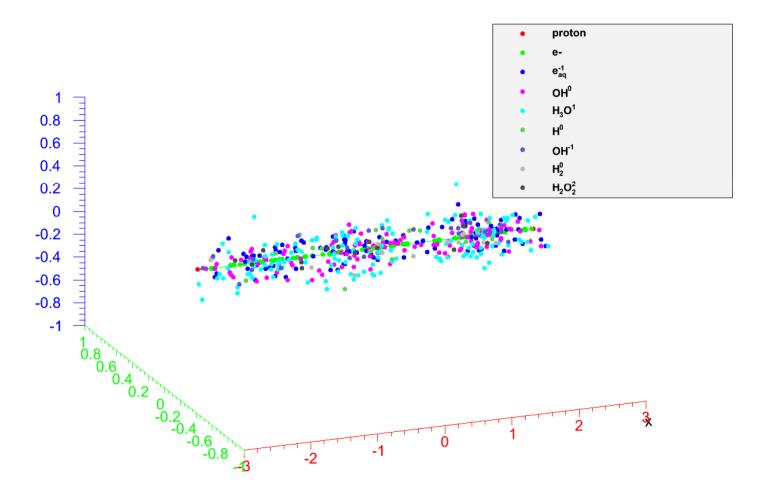
Chemical reactions

Reaction	Reaction rate ($10^{10} M^{-1} s^{-1}$)
$H \bullet + e^{-}_{aq} + H_2O \rightarrow OH^{-} + H_2$	2.65
$H \bullet + \bullet OH \rightarrow H_2O$	1.44
$H \bullet + H \bullet \rightarrow H_2$	1.20
$H_2 + \bullet OH \rightarrow H \bullet + H_2O$	4.17×10 ⁻³
$H_2O_2 + e^{aq} \rightarrow OH^- + \bullet OH$	1.41
$H_3O^+ + e^{aq} \rightarrow H^{\bullet} + H_2O$	2.11
$H_3O^+ + OH^- \rightarrow 2 H_2O$	14.3
•OH + $e^{-}_{aq} \rightarrow OH^{-}$	2.95
$\bullet OH + \bullet OH \to H_2O_2$	0.44
e^{-}_{aq} + e^{-}_{aq} + 2 $H_2O \rightarrow 2 OH^- + H_2$	0.50

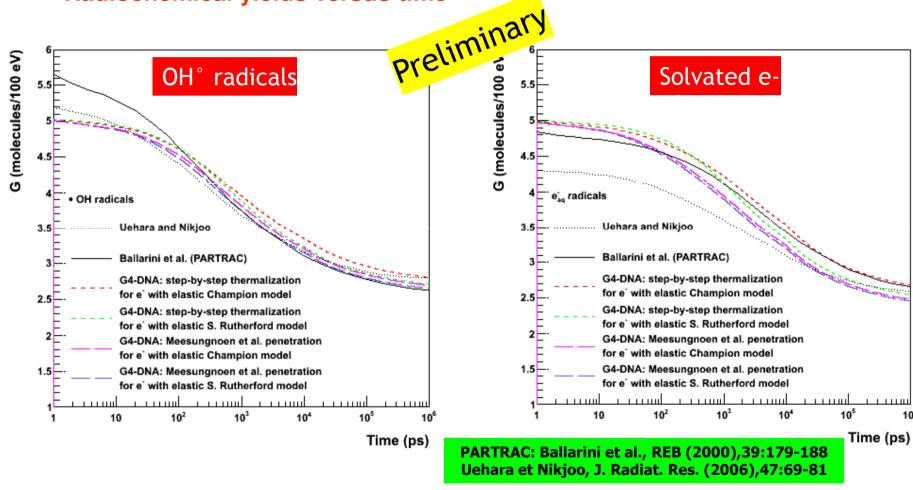

For this prototype software, we followed the set of parameters published by the authors of the PARTRAC software.

However these parameters can be modified by the user.

Kreipl et al, Radiat Environ Biophys, 2009


Simulation at 1 picosecond

M. Karamitros PhD. Work (23/11/2012, CENBG)



Simulation at 1 µsecond

M. Karamitros PhD. Work (23/11/2012, CENBG)

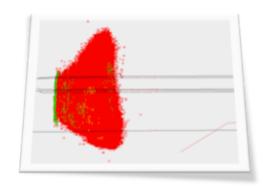
• Effect of the two alternative electron elastic scattering models

Chemistry)
EURADOS Winter School: « micro and nanodosimetric calculations with Geant4-DNA »

• Results are obtained in 30 minutes on a cluster of 80 CPUs (Physics +

Geant4-DNA from the internet

A unique web site for Geant4-DNA: http://geant4-dna.org



Welcome to the Internet page of the Geant4-DNA project.

The <u>Geant4</u> Monte Carlo simulation toolkit is being extended with processes for the **modeling of early biological damages induced by ionising radiation at the DNA scale**. Such developments are on-going in the framework of the Geant4-DNA project, initiated in 2000 by the <u>European Space Agency/ESTEC</u>.

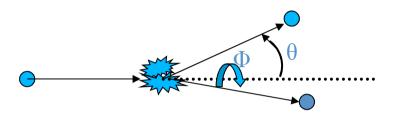
On-going developments include

- Physics processes in liquid water and other biological materials
- Chemistry and physico-chemistry processes
- Molecular geometries
- Quantification of damages (single-strand, double-strand breaks, ...)

Recent posts

The last Geant4 release (9.5) is available for download, see our **Software** section.

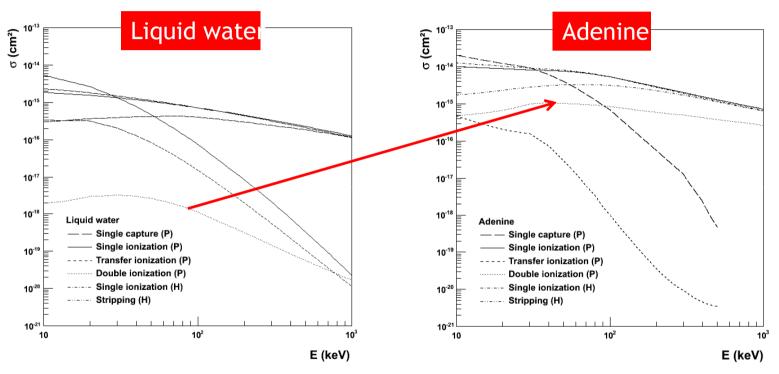
Acknowledgments


- The Geant4-DNA collaboration thanks all theoreticians who are helping us for the development of this extension in the Geant4 toolkit, in particular:
 - Dr M. Dingfelder (East Carolina U., NC, US)
 - Dr D. Emfietzoglou (Ioannina U., Greece)
 - Dr B. Grosswendt (PTB, Germany)

We also thank Dr W. Friedland (Helmholz Zentrum, Munich, Germany), developer of PARTRAC, for his guidance and constant support, since the early days of Geant4-DNA

Thank you for your attenti

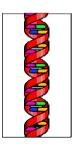
Diffusions angulaires

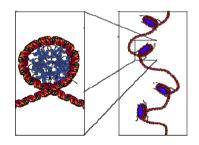

- Procédure de Grosswendt pour les interactions des électrons
- Conservation de la quantité de mouvement pour les protons

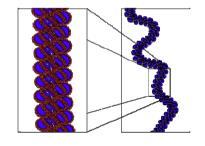
- Tirage aléatoire entre les processus d'interaction possibles tenant compte des valeurs des sections efficaces totales
- La longueur du parcours avant la collision est déduite du libre parcours moyen du processus choisis
- Un tirage aléatoire suivant les sections efficaces relatives à chaque couche du cortège électronique permet de choisir la couche interagissant avec la particule incidente
- Si nécessaire (ionisation), un tirage aléatoire suivant la section efficace différentielle permet de déduire l'énergie de la particule secondaire générée
- La direction de la particule secondaire est déduite suivant le modèle adapté (Grosswendt pour les électrons, conservation de la quantité de mouvement pour les protons...)

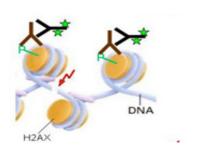
Comparison for DNA -liquid water cross sections

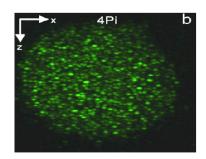
Classical trajectory Monte Carlo approach (CTMC-COB)

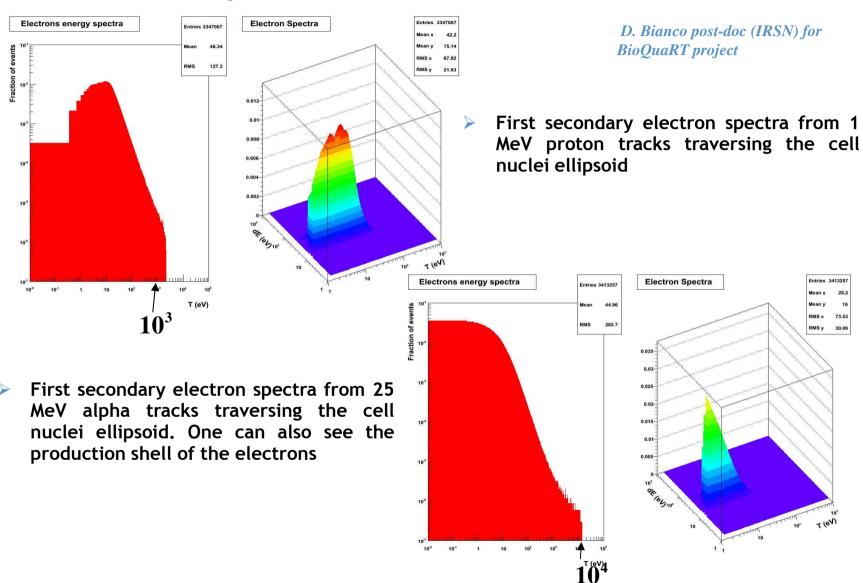

- Protons: single capture, single ionization, transfer ionization (new process), double ionization (new process)
- Neutral hydrogen: single ionization, stripping
- Adenine cross sections are of about one order of magnitude greater than their homologous in liquid water for all the ionizing processes (double ionization shows a 2 orders of magnitude ratio) (but, density is different for both materials->


The target geometry


- "Realistic" relative position of the nanometric volumes of interest at micrometric scale for track intersection analysis
- > G0/G1 phase -> DNA almost homogeneously distributed within the cell nucleus


 γ -H2AX foci data obtained in this cell cycle phase


γH2AX foci => signalization of DSB



- The target geometry is included in the Monte Carlo simulation-> Detector Contruction.cc
- First selection of interesting points for direct effects
- Purpose: available as an example in next releases of Geant4
- In progress-> Hetero-Euchromatin influence study

Electron spectra calculated with Geant4-DNA

