

IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Intercomparisons on eye-lens dosemeters EURADOS exercices

Enhancing nuclear safety

13th EURADOS Winter School January 30th, 2020

IRSN/FRM-414 ind

Isabelle Clairand

Institute for Radiological Protection and Nuclear Safety (IRSN) B.P. 17 92262 Fontenay-aux-Roses France

Co-authors

R. Behrens², M. Brodecki³, E. Carinou⁴, J. Daures⁵, M. Denoziere^{†5}, J. Domienik-Andrzejewska³, M. Ginjaume⁶, O. Hupe², S. Principi⁶, M. Roig⁶, E. H. Silva^{7,8}, F. Vanhavere⁷, L. Van Ryckeghem¹

¹Institute for Radiological Protection and Nuclear Safety (IRSN), B.P. 17, 92262 Fontenay-aux-Roses, France

²Physikalisch-Technische Bundesanstalt (**PTB**), Bundesallee 100, 38116 Braunschweig, **Germany**

³Nofer Institute of Occupational Medicine (NIOM), St Teresa 8, 91-348 Lodz, Poland ⁴Greek Atomic Energy Commission (EEAE), P.O. Box 60092, Agia Paraskevi, 15310 Athens, Greece

⁵CEA-LIST Laboratoire National Henri Becquerel (**CEA-LNHB**), CEA Saclay, Gif-sur-Yvette 91191, **France**

⁶Universitat Politècnica de Catalunya (**UPC**), Diagonal 647, E-08028 Barcelona, **Spain** ⁷Belgian Nuclear Research Centre (**SCK-CEN**), Boeretang 200, Mol BE-2400, **Belgium** ⁸Department of Radiology, UZ Brussel (**VUB**), Laarbeeklaan 101, Brussels 1090, **Belgium**

Introduction

For many years, EURADOS has been organising intercomparison exercises dedicated to individual monitoring services (IMS).

- \Rightarrow for whole-body,
- \Rightarrow extremity,
- \Rightarrow environmental dosemeters.

These exercises give IMS the opportunity to compare their results with other participants and develop plans for improving their dosimetry systems.

In the context of the new eye lens dose limit for occupational exposure of 20 mSv per year stated by the revision of the European Basic Safety Standards Directive 2013/59/EURATOM, EURADOS organized two intercomparisons dedicated to eye lens dosemeters.

Organisation Group

Each exercise was managed and coordinated by an **Organisation Group** composed of members of EURADOS.

IC2014_{eye}

Photon radiation fields

- Eleftheria **Carinou**, EEAE, Greece
- Isabelle Clairand, IRSN, France
- Josiane Daures, CEA, France
- Marc **Denozière**[†], CEA, France
- Mercè **Ginjaume**, UPC, Spain
- Filip Vanhavere, SCK-CEN, Belgium

IC2016_{eye} Photon and beta radiation fields

- Rolf **Behrens**, PTB, Germany
- Marcin Brodecki, NIOM, Poland
- Eleftheria **Carinou**, EEAE, Greece
- Isabelle Clairand, IRSN, France
- Joanna **Domienik**, NIOM, Poland
- Mercè Ginjaume, UPC, Spain
- Oliver Hupe, PTB, Germany

Project phases and time schedule for IC2016_{eye}

Phase	Date
Preparation	Dec. 2015 - February 2016
Selection of participants	March 2016
Execution	April 2016 - February 2017
Reception of dosemeters by coordinating laboratory	June 2016
Irradiations	July-August 2016
Irradiated dosemeters sent to the participants	September 2016
Results reported by the participants	November 2016
First draft individual result datasheets sent to participants	February 2017
Interpretation of results and reporting	February 2017 - May 2017
FINAL individual result datasheets + certificates of attendance	June 2017

Preparation phase (IC2016_{eye})

- Decision about the irradiation plan
- Identification of the irradiation facilities
- Definition of general modalities (maximum number of participants, identification codes, etc.)
- Provisional budget
- Time schedule

Participant application (IC2016_{eye})

- The announcement was made during the EURADOS AM 2016 in Milan (Feb. 2016) and a direct emailing was made to EURADOS members and additional IMS
- Candidate participants were invited to complete and return an application form
- 24 participants were selected, 2 cancelled before the beginning of IC.
- A letter of confirmation was sent to each participant with a set of instructions + a questionnaire (administrative and technical)
- A financial participation of 900 euros was asked to each participant to cover a part of the costs induced by the intercomparison (800 euros for EURADOS sponsor Institutes)

Participant questionnaire (IC2016_{eye})

Participant questionnaire (IC2016_{eye})

DOSEMETER INFORMATION	
Manufacturer	
Type of detector (<i>for example</i> , if TLD: please specify the TLD type)	
Filters (material and thickness)	
Calibration source	
Calibration quantity $(H_{\rm P}(3), H_{\rm P}(0.07), {\rm Ka}, H_{\rm P}(10), {\rm other})$	
Type of calibration phantom	
Photon energy range	
Any special protocol for eye lens dosimetry? (correction factors, energy correction lead glasses correction etc.)	
correction, lead glasses correction, etc.)	

Participant questionnaire (IC2016_{eye})

Execution phase (IC2016_{eye})

Instructions given to participants:

- Preparation of dosemeters according to their normal procedures
- Identify the dosemeters with a specific codification provided by OG
- Send the dosemeters to a contact person from the OG

The contact person dispatched the dosemeters to irradiating laboratories

- The dosemeters were sent back to participants with instructions to report their results (Excel sheet). Participants were asked to report the doses in terms of $H_p(3)$ using their routine measurement protocol.
- The doses provided by each participant were compared with the reference delivered doses. All the results were analysed anonymously.
- First draft results were individually reported back to each participant for comments.

Excel sheet to report the results $(1/2) - (IC2016_{eye})$

URADOS W	G12 intercom	parison exercise of e	ye lens dosemeters	for medical applicat	ions, IC2016eye
vorksheet de	dicated to partic	pipants to report the result:	s : <u>the response vi</u> l	l be evaluated in ter	ms of 14 , (3)
Date					
PARTIC	IPANT ID	ХХХ			
		H ,(3) [*] (mSv) (<i>final result - after</i> substraction of background + any other correction)	Background ^{**} substracted (mSv)	Expanded combined uncertainty % (k=2) ^{***}	COMMENT
XXX_1	irradiated				
XXX_2	irradiated				
XXX_3	irradiated				6
XXX_4	irradiated				
XXX_5	irradiated				
XXX_6	irradiated				
XXX_7	irradiated				0
XXX_8	irradiated				
XXX_9	irradiated				
XXX_10	irradiated				
XXX_11	irradiated				(i
XXX_12	irradiated				
XXX_13	irradiated				
XXX_14	irradiated				
XXX_15	irradiated				6
XXX_16	irradiated				
XXX_17	irradiated				·
XXX_18	irradiated				
XXX_19	irradiated				6
XXX 20	irradiated				

Excel sheet to report the results $(2/2) - (IC2016_{eye})$

XXX, 19 irradiated XXX, 20 irradiated XXX, 21 irradiated XXX, 22 irradiated XXX, 22 irradiated XXX, 24 irradiated XXX, 24 irradiated XXX, 25 spare XXX, 26 spare XXX, 27 spare XXX, 28 spare XXX, 29 spare XXX, 29 spare XXX, 21 spare XXX, 22 spare XXX, 23 spare XXX, 24 irradiated XXX, 25 spare XXX, 27 spare XXX, 28 spare XXX, 30 spare XXX, 31 spare XXX, 32 spare XXX, 31 spare XXX, 13 spare XXX, 14 spare XXX, 15 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
XXX, 20 irradiated Irradiated XXX, 21 irradiated Irradiated XXX, 22 irradiated Irradiated XXX, 23 irradiated Irradiated XXX, 24 irradiated Irradiated XXX, 24 irradiated Irradiated XXX, 24 irradiated Irradiated XXX, 25 spare Irradiated XXX, 26 spare Irradiated XXX, 28 spare Irradiated XXX, 29 spare Irradiated XXX, 20 spare Irradiated XXX, 28 spare Irradiated XXX, 29 spare Irradiated XXX, 21 spare Irradiated XXX, 31 spare Irradiated XXX, 11 drasof Irradiated XXX, 12 drasof Irradiated XXX, 13 spare Irradiated XXX, 14 drasof Irradiated XXX, 14 drasof Irradiated XXX, 15 drasof Irradiated XXX, 14	XXX_19	irradiated				
XXX_21 irradiated XXX_223 irradiated XXX_23 irradiated XXX_24 irradiated XXX_25 spare XXX_26 spare XXX_28 spare XXX_28 spare XXX_28 spare XXX_28 spare XXX_28 spare XXX_30 spare XXX_31 spare XXX_32 spare XXX_32 spare XXX_31 spare XXX_32 spare XXX_32 spare XXX_31 spare XXX_32 spare XXX_4 transit tif you report your results in another quantity, please specify	XXX_20	irradiated				
XXX_22 irradiated	XXX_21	irradiated				
XXX_23 irradiated	XXX_22	irradiated				
XXX_24 irradiated	XXX_23	irradiated				
XXX_26 spare XXX_27 spare XXX_28 spare XXX_29 spare XXX_31 spare XXX_32 spare XXX_32 spare XXX_32 spare XXX_32 spare XXX_32 drassit XXX_4 drassit XXX_4 drassit XXX_4 drassit XXX_4 drassit xxx 1_4 dr	XXX_24	irradiated				· · · · · · · · · · · · · · · · · · ·
XXX_26 spare XXX_27 spare XXX_28 spare XXX_30 spare XXX_31 spare XXX_32 spare XXX_31 spare XXX_31 spare XXX_31 spare XXX_31 spare XXX_32 spare XXX_12 transit XXX_14 transit XXX_15 transit XXX_14 transit XXX_15 transit XXX_14 transit	XXX_25	spare				
XXX_27 spare XXX_28 spare XXX_29 spare XXX_30 spare XXX_31 spare XXX_32 spare XXX_31 spare XXX_31 spare XXX_31 spare XXX_32 spare XXX_31 spare XXX_4 spare </th <th>XXX_26</th> <th>spare</th> <th></th> <th></th> <th></th> <th></th>	XXX_26	spare				
XXX_28 spare spare XXX_29 spare	XXX_27	spare				
XXX_23 spare spare XXX_30 spare	XXX_28	spare				
XXX_30 spare spare XXX_31 spare spare XXX_32 spare spare XXX_32 spare spare XXX_11 transit spare XXX_T2 transit spare XXX_T1 transit spare XXX_T3 transit spare XXX_T4 transit spare *** please indicate the dose due to the background (usually used in your routine protocol) that was substracted to obtain the final result. The transit dose will be taken into account by the organisers. spare **** UNCERTAINTY EVALUATION Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty associated to the #reading (%, k=2) Reference calibration factor Ambient condi	XXX_29	spare				
XXX_31 spare XXX_32 spare XXX_12 spare XXX_12 transit XXX_13 transit XXX_14 transit XXX_14 transit XXX_14 transit XXX_15 transit XXX_14 transit XXX_14 transit XXX_14 transit XXX_14 transit XXX_15 transit XXX_14 transit XXX_14 transit transit dose vill be taken into account by the organisers. the transit dose vill be taken into account by the organisers. the transit dose vill be taken into account by the organisers. the transit dose vill be taken into account by the organisers. the transit dose vill be taken into account by the organisers. the transit dose components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty associated to the account in the calculation of the uncertainty associated to the associated to the account in the calculation of the uncertainty associated to the account in the calculation of the uncertainty associated to the account in the calculation of the uncertainty associated to the account in the calculation factor the calcula	XXX_30	spare				
XXX_32 spare XXX_T_1 transit XXX_T_2 transit XXX_T_3 transit XXX_T_4 transit XXX_T_4 transit **** uncertainty evaluation budget **** Uncertainty evaluation budget Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty associated to the Reading (%, k=2) Reference calibration factor energy/angle (%, k=2) Ambient conditions (%, k=2) k=2) Ambient conditions (%, k=2)	XXX_31	spare				
XXX T_1 transit XXX T_2 transit XXX T_3 transit XXX T_4 transit	XXX_32	spare				
XXX T_2 transif XXX T_3 transif XXX T_4 transif XXX T_4 transif *if you report your results in another quantity, please specify *if you report your results in another quantity, please specify *if you report your results in another quantity, please specify *** please indicate the dose due to the background (usually used in your routine protocol) that was substracted to obtain the final result. The transit dose will be taken into account by the organisers. **** UNCERTAINTY EVALUATION Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Uncertainty evaluation budget Reading (%, k=2) Reference calibration factor (% k=2) Ambient conditions (%, k=2) Arbient conditions (% k=2) associated to the associated to the	XXX T_1	transit				
XXX T_3 transit XXX T_4 transit XXX T_4 transit *if you report your results in another quantity, please specify *** *** please indicate the dose due to the background (<u>usually used in your routine protocol</u>) that was substracted to obtain the final result. The transit dose will be taken into account by the organisers. **** UNCERTAINTY EVALUATION Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Uncertainty evaluation budget Reading (%, k=2) Energy/angle (%, k=2) Ambient conditions (%, k=2) Ambient conditions (%, k=2) associated to the associated to the	XXX T_2	transit				
XXX T_4 transit *if you report your results in another quantity, please specify *if you report your results in another quantity, please specify *** please indicate the dose due to the background (<u>usually used in your routine protocol</u>) that was substracted to obtain the final result. The transit dose will be taken into account by the organisers. *** UNCERTAINTY EVALUATION Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Uncertainty evaluation budget Reading (%, k=2) Reference calibration factor ealibration factor Energy/angle (%, k=2) Ambient conditions (%, k=2) Ambient conditions (%, k=2) Ambient conditions (%, k=2)	XXX T_3	transit				
*** UNCERTAINTY EVALUATION Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Image: Components (reading (%, k=2) Reading (%, k=2) Reference calibration factor Image: Component (%, k=2) Ambient conditions (%, k=2) Reading (%, k=2)	XXX T_4	transit				
**** UNCERTAINTY EVALUATION **** Uncertainty evaluation factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty **** Uncertainty evaluation budget **** **** Uncertainty evaluation budget **** **** Evaluation factor **** **** Uncertainty evaluation budget **** **** Uncertainty evaluation factor **** **** **** ***** ************************************	** please indic	our results in anoth cate the dose due to dose will be take	er quantity, please specify the background (<u>usually</u> In into account by the	used in gour routine , organisers.	protocol) that was subs	tracted to obtain the final result.
*** UNCERTAINTY EVALUATION Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Image: Components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Image: Components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Image: Components (reading, calibration factor, energy and angle correction, ambient conditions or others) Image: Components (reading, calibration factor, energy and angle correction, ambient conditions (%, k=2) Image: Component (%, k=2) <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
****UNCERTAINTY EVALUATION Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Image: Components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Image: Components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Image: Components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Image: Component (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration (reading, calibration factor) Image: Component (reading, calibration factor) Image: Component (reading, calibration (reading, calibration (reading, calibration factor) Image: Component (reading, calibration (reading, calibration (reading, calibration (reading, calibration (reading, calibration (reading,						
Please indicate if some components (reading, calibration factor, energy and angle correction, ambient conditions or others) were taken into account in the calculation of the uncertainty Uncertainty evaluation budget Expanded combined uncertainty associated to the	***UNCERT	AINTY EVALUA	TION			
Image: Second system Image: Second system Image: Second system Beading (%, k=2) Reference calibration factor (%, k=2) Ambient conditions (%, k=2) Image: Second system Ambient conditions (%, k=2) K=2) Ambient conditions (%, k=2) Image: Second system	Please indicate	e if some componer	nts (reading, calibration fact	tor, energy and angle corre	ection, ambient conditions	or others) were taken into account in the calculation of the uncertaint
Uncertainty evaluation budget Reading (%, k=2) Reference calibration factor (%, k=2) Ambient conditions (%, k=2) Expanded combined uncertainty associated to the						
Beading (%, k=2) Reference Energy/angle (%, k=2) Ambient conditions (%, k=2) Expanded combined uncertainty associated to the		5. S.	Uncertainty evaluat	tion budget		
	Reading (%, k=2)	Reference calibration factor	Energy/angle (%, k=2)	Ambient conditions (%, k=2)	Expanded combined uncertainty associated to the	
		0				

Final results (IC2016_{eye})

Final individual result datasheets are completed

+ certificates of participation

	Eye lens dosemeter intercomparison IC2016 _{eye}
CER EURADOS IN	TIFICATE OF PARTICIPATION tercomparison 2016 for eye lens dosemeters (IC2016 _{eye})
Certificate number	EURADOS- IC2016 _{9ye} -001-rev1
Number of pages	5
Date of issue	February 2018
Participating institute	AAA
Dosimetry system	Eye lens dosemeter
Intercomparison procedure	The EURADOS Intercomparison 2016 for eye lens dosemeters was managed and coordinated on behalf of EURADOS by the WG12 Intercomparison Organization Group (OG). This intercomparison was designed to be a bind test for all participants who reported their results without knowing the beam qualities and the reference dose values. The only information they had was that the irradiations were performed in photon radiation fields representative of medical workplaces and S-Cs, as well as beta radiation fields (⁶⁶ Kr, ⁵⁰ Sr ⁴⁰ Y and ¹⁰ Ru+ ¹⁰ Ru ¹).
	The OG established the irradiation plan and announced the intercomparison in February 2016. After completing the application procedures the participants sent their dosemeters, in accordance with the instructions, to the OG in June 2016. The laboratories irradiated the dosemeters according to the irradiation plan in July and August 2016. The dosemeters were sent back to the participants in September 2016. Each participant was instructed to follow normal routine procedures as far as possible. The participants sent the results of the dosemeter readings to the OG coordinator in October 2016. The final individual results were sent to each participant available.
	This certificate is a revision of the first one, EURADOS- IC2016 _{eye} -001. In the first version the performance limits (i.e. trumpet curves) were calculated and represented in the participant's graphs using $H_{\rm c}=0.065$ mSv, as stated in ISO 14146 ¹¹ , whereas in the present version the value of $H_{\rm b}=0.3$ mSv has been used as stated in the current draft revision of ISO 14146 valid for eye lens dosemeters ²⁰ . This change does not imply any modification in the numerical results shown in the Tables and the Graphs. Only for few data mainly for the lower does a result that did not comply with the preliminary oriteria might now fulfit the ISO requirement. When applicable this is specifically indicated in the original certificate.
Number of participants/systems	22 (1 system per participant)
rradiation conditions	See details in page 2.
Participant results	See tables and figures in pages 3 and 4.
Global results	See figures in page 5,
On behalf of the I Organization Gro	ntercomparison On behalf of EURADOS
4	W. That
Isabelle Clairand Coordinator	Werner Rühm Chaimerson

Scope and organization of IC2014_{eye} and IC2016_{eye}

 Both intercomparisons were designed to be a blind test for all participants who reported their results without knowing the reference dose values.

- All participants were requested to prepare their dosemeters according to their usual procedures and to report the doses in terms of $H_p(3)$ using their routine protocol.
- All the data were treated **confidentially** using an identification code assigned to each participant.

Participants (1/2)

Participants: 20 European IMS from 15 different countries participated (Austria, Belgium, Czech Rep., France, Greece, Italy, Lithuania, Poland, Rumania, Serbia, Slovakia, Spain, Switzerland, UK and Ukraine).

Participants: 22 IMS from 12 different countries (Bulgaria, Czech Republic, France, Germany, Israel, Italy, Slovakia, Spain, Switzerland, Turkey, United Kingdom and USA).

All the provided dosemeters were composed of thermoluminescent detectors.

IC2014 _{eye}	Dosemeter type	IC2016 _{eye}
9	Eye-D TM system (ORAMED ¹ European project)	6
3	dosemeters with a specific holder	3
8	dosemeters placed in a plastic bag	11
0	whole body dosemeters	2

¹Vanhavere, F. et al. ORAMED: optimization of radiation protection of medical staff. EURADOS report 2012-02, ISSN 2226-8057, ISBN 978-3-943701-01-2. Braunschweig (2012).

Participants (2/2)

In addition, most of the participants indicated, via a **questionnaire**, some **technical information** such as:

- the type of the included detector,
- the filter used if any,
- the phantom and energy quality used for calibration.

IC2014 _{eye}	Calibration conditions	IC2016 _{eye}
9	participants use pure S-Cs or pure S-Co or both	13
8	participants use various X-ray spectra	8
3	participant use mixed S-Cs and X-ray	1

Radiation qualities and doses imparted - photons

	Radiation quality and angle of incidence	Ref.	Mean E. (keV)	Dose range H _p (3) (mSv)
	S-Cs; 0°	ISO 4037-1	667	0.4 - 0.5
	S-Cs; 0°	ISO 4037-1	667	2.0 - 2.2
	S-Cs; 60°	ISO 4037-1	667	2.0 - 2.1
	N-40; 0°	ISO 4037-1	33	3.0 - 3.1
⇒	N-60; 0°	ISO 4037-1	48	3.0 - 3.1
	N-80; 0°	ISO 4037-1	65	3.0 - 3.1
•	RQR6; 0°	IEC 61267	44	2.6 - 2.7
⇒	RQR6; 45°	IEC 61267	44	2.5 - 2.6
	RQR6; 75°	IEC 61267	44	2.1 - 2.2
•	Realistic field (scattered field in int rad.)	CONRAD/ORAMED European projects (PCRD 7)	45	0.9 - 1.0

Conversion coefficients to relate air kerma to $H_p(3)$ were taken from Behrens (2012) for ISO 4037 qualities and from Principi et. Al (2015) for IEC 61267 qualities. For the "realistic field" the conversion coefficient was calculated with PENELOPE Monte Carlo code as described in EURADOS 2012-02 report (2012).

• Behrens, R. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities. Radiat. Prot. Dosim. 151(3), 450-455 (2012).

 Principi S., et al. Air kerma to H_p(3) conversion coefficients for IEC 61267 RQR X-ray radiation qualities. Application to dose monitoring of the lens of the eye in medical diagnostics. International Conference on Individual Monitoring of Ionizing Radiation, Bruges 2015.

• Vanhavere, F., et al. ORAMED: Optimization of Radiation Protection of Medical Staff. EURADOS Report 2012-02, ISSN 2226-8057, ISBN 978-3-943701-01-2. Braunschweig (2012)

IC2014_{eve}

Radiation qualities and doses imparted - photons

	Radiation quality and angle of incidence	Ref.	Mean E. (keV)	Dose range H _p (3) (mSv)
	RQR6; 0°	IEC 61267	44	2.0 - 3.0
\Rightarrow	RQR6; 45°	IEC 61267	44	2.0 - 3.0
	RQR6; 75°	IEC 61267	44	2.0 - 3.0
•	N-100; 0°	ISO 4037-1	85	2.0 - 3.0
 	S-Cs; 0°	ISO 4037-1	662	2.0 - 3.0
۲	S-Cs; 60°	ISO 4037-1	662	2.0 - 3.0

Conversion coefficients to relate air kerma to $H_p(3)$ were taken from Behrens (2012) for ISO 4037 qualities and from Principi et al. (2016) for IEC 61267 qualities.

- Behrens, R. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities. Radiat. Prot. Dosim. 151(3), 450-455 (2012).
- Principi S., Guardiola C., Duch MA., Ginjaume M. Air kerma to Hp(3) conversion coefficients for IEC 61267 RQR X-ray radiation qualities: application to dose monitoring of the lens of the eye in medical diagnostics. Radiat Prot Dosimetry. 170(1-4), 45-8 (2016).

Radiation qualities and doses imparted - betas

	Radiation quality and angle of incidence	Ref.	Mean energy (MeV)	Dose range H _p (3) (mSv)
•	⁸⁵ Kr; 0°	ISO 6980-1	0.24	0.03 - 0.04
	⁹⁰ Sr+ ⁹⁰ Y;0°	ISO 6980-1	0.8	2.0 - 3.0
	⁹⁰ Sr+ ⁹⁰ Y;60°	ISO 6980-1	0.8	2.0 - 3.0
•	¹⁰⁶ Ru+ ¹⁰⁶ Rh; 0°	ISO 6980-1	1.2	1.0 - 1.5

The low energy beta quality (⁸⁵Kr, 0.24 MeV) was chosen to test the design of the dosemeters, in particular to check if the filter in front of the detector is sufficient. Even if this quality is not used in practice, such energies are produced by partially shielded high energy beta sources and are therefore of relevance.

Conversion coefficients to relate absorbed to tissue at 0.07 mm depth, D_t , to $H_p(3)$ were taken from Behrens (2012, 2015) for beta radiation qualities

- Behrens R. and Buchholz G. Extensions to the Beta Secondary Standard BSS 2. J. Instrum. 6, P11007 (2011) and Erratum: J. Instrum. 7, E04001 (2012) and Addendum: J. Instrum. 7, A05001 (2012).
- Behrens R. Correction factors for the ISO rod phantom, a cylinder phantom, and the ICRU sphere for reference beta radiation fields of the BSS 2. J. Instrum. 10, P03014 (2015).

Irradiation conditions

- Irradiations were performed in terms of personal dose equivalent $H_p(3)$
- The head phantom (20 cm * 20 cm) was used (ORAMED project¹ and ISO 4037-3)
- Two dosemeters of each participant were irradiated for each setup.

¹Gualdrini, G., Mariotti, F., Wach, S., Bilski, P., Denoziere, M., Daures, J., Bordy, J.-M., Ferrari, P., Monteventi, F., Fantuzzi, E., Vanhavere, F. A new cylindrical phantom for eye lens dosimetry development. Rad. Meas. **46**, 1231-1234 (2011)"

Results evaluation

The numerical results in the intercomparisons are reported as the dosemeter response R, where R is defined as:

 $R = H_p(3)_{participant}$ corrected for transit dose / $H_p(3)_{reference}$

The performance limits according to the ISO 14146 standard, commonly known as "trumpet curves", were adopted to analyze the results :

$$\frac{1}{F} \left(1 - \frac{2H_0}{H_0 + H_c} \right) \le R \le F \left(1 + \frac{H_0}{2H_0 + H_c} \right)$$

- R is the response, the ratio between the participant measured value and the conventional true value
- **F** = 1.5 (ICRP 75)
- $H_{\rm C}$ is the conventional true value, in this case, $H_{\rm p}(3)_{\rm reference}$
- *H*₀: was chosen equal to:

ISO14146-2000

• <u>2014</u>: was chosen equal to **0.085 mSv** for all participants, assuming a "lower limit of the dose range for which the system has been approved" of 1 mSv in a year, and an issuing frequency of 12 per year, consistent with the EURADOS report "EURADOS Intercomparison 2008 for Whole Body Dosemeters in Photon Fields" EURADOS Report 2012-01.

« Draft version » ISO14146 -2018

Individual result datasheet (1/3) IC2016_{eye}

EL	Evopean Radiation Dosimetry Group	EURADOS European Radiation Dosimetry Group
CEI	RTIFICATE OF PARTICIPATION ntercomparison 2016 for eye lens dosemeters (IC2016 _{eye})	Irradiation conditions
Certificate numbe Number of page	r EURADOS-IC2016 _{1/1} e-001-rev1 s 5	Table 1 summarizes the irradiation conditions chosen Table 1. Irradiation plan of the Intercomparison: for this intercomparison. S-Cs, and N-100 series realiation qualities and angles of incidence, mean defined in ISO 4037-1 standard ¹⁰ , ROR 6 disgnostic energy (kev) and range of Imparted doese in terms of
Date of issu	e February 2018	fields defined in IEC 61267 standard ⁴⁹ and beta personal dose equivalent <i>H</i> ₀ (3) in mSv.
Participating institut	e AAA	and angle of energy H ₂ (3) The incidence under performed as a subjection lead incidence (keV) (mSV)
Dosimetry system	n Eye lens doserneter	phantom (20 cm x 20 cm) ⁽⁶⁾ developed during the OPAMED Excessor and entering the **Kr 0* 250 0.03 - 0.04
Intercomparisor procedure	The EURADOS Intercomparison 2016 for eye lens dosemeters was managed and coordinated on behalf of EURADOS by the WG12 Intercomparison Organization foroup (OG). This intercomparison was designed to be a blind test for all participants who reported their results without knowing the beam qualities and the reference dose values. The only information they had was that the irradiations were performed in photon radiation fields representative of medical workplaces and S-Cs, as well as beta radiation fields (⁶⁶ Kr, ⁵⁵ Sr+ ⁵⁶ Y and ¹⁹⁷ Ru+ ¹⁰⁶ Rh).	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Number of participants/systems Irradiation conditions Participant results Global results On behalf of the Organization Gr Unganization Gr	 A CG established the irradiation plan and amounced the intercomparison in February 2016. After completing the application procedures the participants sent the CG in June participant is in Severember 2018. Each participant sent the results of the OC in June participant is Severember 2016. Each participant van instructed to follow normal routine procedures as far as possible. The participants sent the results of the oC in June participant is Severember 2016. Each participant van instructed to follow normal routine procedures as far as possible. The participant van instructed to follow normal routine procedures the OC conditionatr in October 2016. The final individual results were sent to each participant van instructed to follow normal routine procedures in the OC conditionatr in October 2016. The final individual results were sent to each participant van instructed to follow one calculated in the participant van instructed to follow one calculated in the participant van instructed to follow one calculated in the participant van instructed to follow one calculated in the participant van instructed to follow one calculated in the participant van instructed to follow one calculated in the participant van instructed to follow one calculated in the participant van instructed to follow one calculated in the current draft revision of ISO 14146⁽¹⁾, whereas in the present version the van modification orther amplituation to the orthogen one concerdity indicated in the original certificate. 22 (1 system per participant) See details in page 2. See tables and figures in pages 3 and 4. See figures in page 5. Intercomparison On the first of EURADOS on the original certificate. See figures in page 5. Macmatina Advector A	Chiefs for the evaluation of the results The numerical results in this intercomparison are reported as the doisemeter response <i>R</i> , where <i>R</i> is defined as the value of the doose reported by the participant and or corrected for transit dose, <i>H_a</i> , divided by the reference value, <i>H_a</i> (3), given by the irradiation laboratory (see tables pages 3 and 4). For the analysis of the global results, the performance limits according to the ISO 14146 standard ⁽²⁾ , commonly known as 'turnpet curves' were adopted. The <i>H_a</i> (1) and <i>H_a</i> (1)
European Radiation Dosimel EURADOS - IC2016 _{tyt} -001-i	ny Group e.V., Postfach 1129, D-85758 Neuherberg Page 1/5 ev1 – Participant AAA – February 2018	European Radiation Dosimetry Group e.V., Postfach 1129, D-85758 Neuherberg Page 2/5 EURADOS - IC2018 _{eye} 001-rev1 – Participant AAA – February 2018

Individual result datasheet (2/3) IC2016_{eye}

Radiation Quality	Dosimeter	Conventional			mary ripto)	Deta quai	lues		
Quality	id	quantity value	Repo parti	Reported by participant		Response		Mean results per set-u	
	N.	± uncertainty (k=2) H _p (3) _c (mSv)	H, * (mSv)	H _s ↔ (mSv)	$R = \frac{H_{\rm s}}{H_{\rm p}(3)_{\rm c}}$	ISO 14146 Criteria	Hs (mSV)	R	CV (R) (%)
	1 N	0.031 ± 0.022	21.41	21.16	683	NO			
^w Kr, 0°	1	0.031 ± 0.022	20.17	19.93	643	NO	20.55	663	4.3
	0 8	1.100 ± 0.042	1.585	1.338	1.22	YES	areas.		
Ru+ "Rh, 0		1.100 ± 0.042	1.642	1.395	1.27	YES	1.367	1.25	2.8
0	1	2.301 ± 0.088	5.170	4.923	2.14	NO	4.007	1-2012	
Sr+**Y, 0*	0 2	2.301 ± 0.088	5.117	4.870	2.12	NO	4.897	2.13	0.7
in Par and		2.200 ± 0.170	14.04	13.79	6.27	NO	102021 772-221		
SF+Y, 60*	3	2.200 ± 0.170	13.25	13.00	5.91	NO	13.40	0.09	4.2
o	f most personal	dosimetry services.			N 959				
0.5					TO	669			1
5.5			_		600				
45					500				
v 40					157, D ¹ 400 TRue ^{sta} Wh. D ¹⁰ RC				
2 35					Sz+**Y.0* 300				
2 35 2 30 25				4"	Sri ^{#1} Y.627				
25 20 25 20 18			_	A*1	SH4 ¹¹ Y, 63* 200	-			
2 35 2 30 25				1.10	and the state of t				

EURADOS European Radiation Dosimetry Group

Eye lens dosemeter intercomparison IC2016_{eye}

PARTICIPANT RESULTS - photon qualities

PARTICIPANT			Reference quantity H _p (3) - Photon qualities						
Radiation Quality	Dosimeter id	Conventional quantity value ± uncertainty (k=2) H _p (3) _c (mSv)	Reported by participant		Response		Mean results per set-up		
			H,* (mSv)	Hs ** (mSv)	$R = \frac{H_{\rm s}}{H_{\rm p}(3)_{\rm c}}$	ISO 14146 Criteria	Hs (mSv)	R	CV (R) (%)
S-Cs, O ^s		2.900 ± 0.088	2.897	2.650	0.91	YES	2.639	0.91	0.0
	1	2.900 ± 0.088	2.875	2.628	0.91	YES			
S-Cs, 60°		2.800 ± 0.084	2.756	2.509	0.90	YES	2.540	0.91	1.6
		2.800 ± 0.084	2.817	2.570	0.92	YES			
RQR 6, 0º		2.600 ± 0.130	3.167	2.890	1,11	YES	2.876	1.11	0.6
	1 8	2.600 ± 0.130	3.139	2.862	1.10	YES			
RQR 6, 45°	0 0	2.500 ± 0.126	3.235	2.958	1.18	YES	2.880	1.15	3.7
	G 6	2.500 ± 0.126	3.078	2.801	1.12	YES			
RQR 6, 75°		2.400 ± 0.120	3.249	2.972	1.24	YES	3.021	1.26	2.2
		2.400 ± 0.120	3.346	3.069	1.28	YES			
N-100, 0º	1	2.700 ± 0.136	2.451	2.174	0.81	YES	2.167	0.81	0.9
	1	2.700 ± 0.136	2.437	2.160	0.80	YES			

*H.: Participant reported value (corrected for background according to the routine protocol of the participant) ** H₄: Participant reported value corrected for transit. H₆ = H₆ - H₆

Correction for transit for S-Cs: H = 0.247 mSv

Correction for transit for other photon qualities: $H_1 = 0.277 \text{ mSv}$

European Radiation Dosimetry Group e.V., Postfach 1129, D-85758 Neuherberg EURADOS i – February 2018 Page 4/5

Individual result datasheet (3/3) IC2016_{eye}

EURADOS European Radiation Dosimetry Group Eye lens dosemeter intercomparison IC2016sye

GLOBAL RESULTS

Summary of all reported response values as a function of reference dose for all the participants – <u>beta qualities</u>

European Radiation Dosimetry Group e.V., Postfach 1129, D-85758 Neuherberg EURADOS - IC2016_{ww}=001-rev1 - Participant AAA - February 2018 Page 5/5

Results - photons (1/3)

Results - photons (2/3)

Box plots showing the minimum, 1st quartile, median, 3rd quartile and maximum responses **for each** participant for photon qualities.

- A relatively large variability is observed among participants, the median of responses ranges from:
 - 0.7 to 1.7 in 2014,
 - 0.7 to 1.6 in 2016.

Results - photons (3/3)

- The difficulties noticed for large angle irradiation setups are more frequently observed for dosemeters placed in plastic bags, but this is not systematic and the difficulties also occur for other types of dosemeters.
- These results **do not show any obvious link with the beam quality** used by participants **for the calibration**.

A deeper analysis cannot be carried out due the relatively low number of participants and dosemeter types considering the organizers' commitment to maintain the anonymity of results.

Results - betas (1/5)

In total, 56% of the results are within the trumpet curves.

- ¹⁰⁶Ru+¹⁰⁶Rh: 91%
- ${}^{90}Sr + {}^{90}Y : 47\%$
- ⁸⁵Kr: 41%

<u>Remark</u>: the conventional quantity value for ⁸⁵Kr was low (0.03 mSv): below the usual reporting level and the lower detection limit (LLD) of most IMS. For the ⁸⁵Kr irradiations, the response is considered correct for the participants who provided a measurement equal or below their LLD (5 participants).

Summary of all reported response values R as a function of reference dose for all the participants for **<u>beta qualities.</u>**

Results - betas (2/5)

The median of responses ranges from **0.96 to 1.9 for all betas setups except for** ⁸⁵Kr for which large overresponses are observed with a median equal to **154**.

Box plots showing the minimum, 1st quartile, median, 3rd quartile and maximum responses **per irradiation setup** for beta qualities.

Results - betas (3/5)

- ¹⁰⁶Ru+¹⁰⁶Rh: 20 participants are within the trumpet curves
- ⁹⁰Sr+⁹⁰Y; 0°: 10 participants within the trumpet curves
- ⁹⁰Sr+⁹⁰Y; 60°: 8
 participants within the trumpet curves
- ⁸⁵Kr: 4 participants within the limits + 5 with data below the LLD.
- Only 1 participant has 100% of results within the limits for <u>all setups with beta</u> <u>qualities</u>

Box plots showing the minimum, 1st quartile, median, 3rd quartile and maximum responses for each participant for <u>beta qualities</u> excluding results for ⁸⁵Kr. Participants marked with * gave results outside of the trumpet curves for ⁸⁵Kr.

A relatively large variability is observed among participants, the median of responses ranges from 0.6 to 9.8 (to 13.5 if ⁸⁵Kr included).

Participant

Results - betas (4/5)

 Regarding the participants with responses outside the trumpet curves for beta beam qualities - except ⁸⁵Kr: no obvious link was found with the type of dosemeter, according to the information given by the participants.

A deeper analysis cannot be carried out because of the obligation to maintain the anonymity of results.

- For ⁸⁵Kr radiation large overresponses are observed.
- All dosemeters (except for one participant) with an overresponse to 85 Kr are designed for the measurement of $H_p(0.07)$, this can be explained by an insufficient filter in front of the detector.

⁸⁵Kr has a beta maximum energy of about 0.69 MeV, which does not contribute to the delivered $H_p(3)$ dose.

For 90 Sr+ 90 Y and 106 Ru+ 106 Rh, the overresponses are lower, because betas contribute significantly to $H_p(3)$ compared to 85 Kr.

Results - betas (5/5)

Conclusion

These two intercomparisons gave an overview of the different dosimetry systems currently available for eye lens dose monitoring

Results are globally satisfactory for <u>photon qualities</u>, whatever the type of dosemeters, since 90% of the results are in accordance to the ISO 14146 standard requirements.

For a minority of participants, some discrepancies between the results and reference doses were observed in the case of the irradiation setups characterized by large angles and/or low energies.

Results for <u>betas</u> are less satisfactory and illustrate the difficulties in measuring beta radiation. The main observed problem was an over-estimate of $H_p(3)$ for low beta energy.

This intercomparison demonstrates that dosemeters designed for $H_p(0.07)$ are, in general, not suitable to monitor the dose to the eye lens in case of betas because the filter placed in front of the detector is too thin.

34

An intercomparison for eye lens dosemeters (and extremity dosemeters) organised by EURADOS is currently in progress: the final results will be presented during the IM conference in Budapest in April 2020.

IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Thank you for your attention

Enhancing nuclear safety