

Assessment of doses to embryo and fetus after incorporation of radionuclides

Sigrid Leide-Svegborn

Dept. of Radiation physics Skåne University Hospital Malmö, Lund University Sweden

14th EURADOS Winter School 'Fetal radiation risk: dose assessment in occupational, medical and emergency situations' *(On-line event)* 3rd February 2021

Pregnancy and medical radiation

Thousands of pregnant women are exposed to ionizing radiation each year

- Lack of knowledge has probably led to abortion, unnecessarily
- For most patients radiation exposure is medically appropriate and the radiation risk to the embryo/fetus is minimal.
 - There are however exceptions....
 - There are occasions when the fetal exposure will result in significant harm to the embryo/fetus

Pregnancy and radiopharmaceuticals

Irradiation of the embryo/fetus in Nuclear medicine

• The embryo/fetus may be irradiated externally from activity in the mother

 Some radiopharmaceuticals may cross the placenta and concentrate in fetal tissue i.e. internal exposure of the fetus

Pregnancy and radiopharmaceuticals

Irradiation of the embryo/fetus in Nuclear medicine

• The embryo/fetus may be irradiated externally from activity in the mother

 Some radiopharmaceuticals may cross the placenta and concentrate in fetal tissue i.e. internal exposure of the fetus

- **Biodistribution and retention in organs and tissues** ____
- **Excretion routes** _
- Radionuclide ___
 - **Placental crossover**

24 h p.i.

^{99m}Tc-MIBI

15 min p.i.

¹²³I-ioflupane

Sigrid Leide-Svegborn 2021

^{99m}Tc-diphosphonate

Anterior

Posterior

Pregnancy and medical radiation

Radiation-related risks throughout the pregnancy is related to the:

- The absorbed dose to the embryo/fetus (mGy)
- The stage of pregnancy at the time of irradiation

The radiation risk is most significant during the organogenesis and in the early fetal period, somewhat less in the second trimester and least in the third trimester

Most risk

Less risk

Least risk

CRP publication 84

Pregnancy and medical radiation

Radiation-related effects in embryo/fetus

- Early effects
- Effects on embryo/fetus during growth
 - lethal effects threshold dose 100 mGy
 - malformations threshold dose 100-200 mGy or higher
 - mental retardation threshold dose 100 mGy
 - High risk 8-15 w post-conception
 - Somewhat less 16-25 w p.c.
- Cancer (leukemia and solid tumours) No threshold dose

ICRP publication 84

External dose from activity in the organs of the mother

Fetal dosimetry – "Organ dose"

Dose to <u>uterus</u> of the mother

ICRP Publication 106 and 128 "Radiation Dose to Patients from Radiopharmaceuticals"

Dose to the <u>embryo/fetus</u>

- Russell JR et al., Health Phys, 1997:756-769
- Russell JR et al., Health Phys, 1997:747-755
- ICRP Publication 84
- Stabin MG, *J Nucl Med*, 2018:1005-1006
- Other publications in the "Fetal dose area"

ICRP, 2008. Ann. ICRP 38 (1-2) ICRP, 2015. Ann. ICRP 44 (2S)

Dose to uterus of the mother

ICRP Publication 106 and 128 "Radiation Dose to Patients from

Radiopharmaceuticals"

Table. Absorbed dose per unit A [mGy/MBq]

Radiation dose to patients from radiopharmaceuticals

Table C.31. Absorbed doses for 18F-fluoro-2-deoxy-D-glucose.

	Absorbed	l dose per un	it activity ad:	ministered (n	iGyMBq ^{−1})
Organ	Adult	15 years	10 years	5 years	1 year
Adrenals	1.2E-02	1.6E-02	2.4E-02	3.9E-02	7.1E-02
Bone surfaces	1.1E-02	1.4E-02	2.2E-02	3.4E-02	6.4E-02
Brain	3.8E-02	3.9E-02	4.1E-02	4.6E-02	6.3E-02
Breast	8.8E-03	1.1E-02	1.8E-02	2.9E-02	5.6E-02
Gallbladder wall	1.3E-02	1.6E-02	2.4E-02	3.7E-02	7.0E-02
Gastrointestinal tract					
Stomach wall	1.1E-02	1.4E-02	2.2E-02	3.5E-02	6.7E-02
Small intestine wall	1.2E-02	1.6E-02	2.5E-02	4.0E-02	7.3E-02
Colon wall	1.3E-02	1.6E-02	2.5E-02	3.9E-02	7.0E-02
(Upper large intestine wall	1.2E-02	1.5E-02	2.4E-02	3.8E-02	7.0E-02)
(Lower large intestine wall	1.4E-02	1.7E-02	2.7E-02	4.1E-02	7.0E-02)
Heart wall	6.7E-02	8.7E-02	1.3E-01	2.1E-01	3.8E-01
Kidneys	1.7E-02	2.1E-02	2.9E-02	4.5E-02	7.8E-02
Liver	2.1E-02	2.8E-02	4.2E-02	6.3E-02	1.2E-01
Lungs	2.0E-02	2.9E-02	4.1E-02	6.2E-02	1.2E-01
Muscles	1.0E-02	1.3E-02	2.0E-02	3.3E-02	6.2E-02
Oesophagus	1.2E-02	1.5E-02	2.2E-02	3.5E-02	6.6E-02
Ovaries	1.4E-02	1.8E-02	2.7E-02	4.3E-02	7.6E-02
Pancreas	1.3E-02	1.6E-02	2.6E-02	4.0E-02	7.6E-02
Red marrow	1.1E-02	1.4E-02	2.1E-02	3.2E-02	5.9E-02
Skin	7.8E-03	9.6E-03	1.5E-02	2.6E-02	5.0E-02
Spleen	1.1E-02	1.4E-02	2.1E-02	3.5E-02	6.6E-02
Testes	1.1E-02	1.4E-02	2.4E-02	3.7E-02	6.6E-02
Thymus	1.2E-02	1.5E-02	2.2E-02	3.5E-02	6.6E-02
Thyroid	1.0E-02	1.3E-02	2.1E-02	3.4E-02	6.5E-02
Urinary bladder wall	1.3E-01	1.6E-01	2.5E-01	3.4E-01	4.7E-01
Uterus	1.8E-02	2.2E-02	3.6E-02	5.4E-02	9.0E-02
Remaining or gans	1.2E-02	1.5E-02	2.4E-02	3.8E-02	6.4E-02
Effective dose (mSv MBq ⁻¹)	1.9E-02	2.4E-02	3.7E-02	5.6E-02	9.5E-02
The physical half-life of ¹⁸ F is 1.83 h.					

Dose to the <u>embryo/fetus</u> ICRP Publication 84

Radiopharmaceutical	Procedure	Administered activity (MBq)	Early (mGy)	9 month (mGy)
^{99m} Tc	Bone scan (phosphate)	750	4.6-4.7	1.8
^{99m} Tc	Lung perfusion (MAA)	200	0.4-0.6	0.8
^{99m} Tc	Lung ventilation (aerosol)	40	0.1-0.3	0.1
^{99m} Tc	Thyroid scan (pertechnetate)	400	3.2-4.4	3.7
^{99m} Tc	Red blood cell	930	3.6-6.0	2.5
^{99m} Tc	Liver colloid	300	0.5-0.6	1.1
^{99m} Tc	Renal DTPA	750	5.9-9.0	3.5
⁶⁷ Ga	Abscess/tumour	190	14-18	25
¹²³ I	Thyroid uptake1)	30	0.4-0.6	0.3
¹³¹ I	Thyroid uptake1)	0.55	0.03-0.04	0.15
¹³¹ I	Metastases imaging ¹⁾	40	2.0-2.9	11.0

ICRP Publication 84 Pregnancy and Medical Radiation

ICRP, 2000. Ann. ICRP 30 (1)

Adapted data from publications by Russell JR *et al*, in Health physics

Approximate whole body fetal dose (mGy) from common nuclear medicine procedures

Procedure	Activity (MBq)	Early pregnancy	9 months
Тс-99 ^т			
Bone scan	750	4.7	1.8
Lung scan	240	0.9	0.9
Liver colloid scan	300	0.6	1.1
Thyroid scan	400	4.4	3.7
Renal DTPA	300	9.0	3.5
Red blood cell	930	6.0	2.5
I-123 thyroid uptake	30	0.6	0.3
I-131 thyroid uptake	0.55	0.04	0.15

Sigrid Leide-Svegborn 2021

Dose to the embryo/fetus

- Russell JR et al., Health Phys, 1997:756-769
- Russell JR et al., Health Phys, 1997:747-755

Mean absorbed dose to a target tissue, \bar{D}_{T}

$$\bar{\mathbf{D}}_{\mathsf{T}} = \sum \tilde{\mathbf{A}} \cdot \mathbf{S}_{\mathsf{T} \leftarrow \mathsf{S}} \quad [\mathsf{mGy}]$$

$$\tilde{A}$$
 – Cumulated activity [MBq·h]
 $S_{T \leftarrow S}$ – S-value [mGy/MBq·h]

Target tissue = fetus

Source tissues = activity in the organs of the mother

S-values (or SAFs) are based on mathematical phantoms describing a pregnant female in early pregnancy, first trimester, second trimester and third trimester

SAF: Specific Absorbed Fraction

Dose to the embryo/fetus

Russell JR et al., Health Phys, 1997:756-769

"Radiation absorbed dose to the embryo/fetus from radiopharmaceuticals"

Table 3a. Absorbed Dose Estimates to the Embryo/Fetus Per Unit Activity of Radiopharmaceutical Administered to the Mother (maternal contributions only).

Dose coefficients

Radiopharmaceutical	Early mGy/MBq	3 Month mGy/MBq	6 Month mGy/MBq	9 Month mGy/MBq
¹¹¹ In DTPA ¹¹¹ In Pentetreotide	6.5×10^{-2} 8.2×10^{-2} 1.7×10^{-1}	4.8×10^{-2} 6.0×10^{-2} 1.1×10^{-1}	2.0×10^{-2} 3.5×10^{-2} 9.9×10^{-2}	1.8×10^{-2} 3.1×10^{-2} 8.9×10^{-2}
¹¹¹ In Red Blood Cells ¹¹¹ In White Blood Cells	2.2×10^{-1} 1.3×10^{-1}	1.3×10^{-1} 9.6 × 10 ⁻²	1.1×10^{-1} 9.6 × 10^{-2} 2.5 × 10^{-3}	8.6×10^{-2} 9.4 × 10^{-2} 2.1 × 10^{-3}
^{99m} Tc Albumin Microspheres ^{99m} Tc Disofenin ^{99m} Tc HEDP	4.1×10^{-5} 1.7×10^{-2} 7.2×10^{-3}	3.0×10^{-3} 1.5×10^{-2} 5.2×10^{-3}	1.2×10^{-2} 2.7×10^{-3}	6.7×10^{-3} 2.4×10^{-3}
^{99m} Tc HMPAO ^{99m} Tc Human Serum Albumin	8.7×10^{-3} 5.1×10^{-3}	6.7×10^{-3} 3.0×10^{-3}	4.8×10^{-3} 2.6×10^{-3}	3.6×10^{-3} 2.2×10^{-3} 5.2×10^{-3}
^{99m} Tc MAG3 ^{99m} Tc MIBI-rest ^{99m} Tc MIBI-stress	1.8×10^{-2} 1.5×10^{-2} 1.2×10^{-2}	1.4×10^{-2} 1.2×10^{-2} 9.5×10^{-3}	5.5×10^{-3} 8.4×10^{-3} 6.9×10^{-3}	5.4×10^{-3} 4.4×10^{-3}
^{99m} Tc RBC-Heat Treated	1.7×10^{-3}	1.6×10^{-3}	2.1×10^{-3}	2.2×10^{-3}

0.14

Dose to the embryo/fetus

Russell JR et al., Health Phys, 1997:756-769

"Radiation absorbed dose to the embryo/fetus from radiopharmaceuticals"

Radiopharmaceutical	Activity Admin. MBg (mCi)	Early, mGy	3 Month, mGy	6 Month, mGy	9 Month, mGy
	0.04	40×10^{-2}	2.7×10^{-2}	34×10^{-2}	3.5×10^{-2}
Co vitalini D-12, Normal-Plusinig	(0.001)	(4.0×10^{-3})	(2.7×10^{-3})	(3.4×10^{-3})	(3.5×10^{-3})
7Co Vitamin B. 12 Normal No Elushing	0.04	60×10^{-2}	40×10^{-2}	4.8×10^{-2}	5.2×10^{-2}
CO Vitalilli D-12, Normal-No Flashing	(0.001)	(6.0×10^{-3})	(4.0×10^{-3})	(4.8×10^{-3})	(5.2×10^{-3})
Co Vitamin B-12 PA-Flushing	0.04	84×10^{-3}	6.8×10^{-3}	6.8×10^{-3}	6.0×10^{-3}
Co vitanini D-12, 1 A-1 tosining	(0.001)	(84×10^{-4})	(6.8×10^{-4})	(6.8×10^{-4})	(6.0×10^{-4})
Co Vitamin B-12 PA-No Flushing	0.04	1.1×10^{-2}	8.4×10^{-3}	8.8×10^{-3}	8.0×10^{-3}
Co vitanini D-12, 1 A-100 Flashing	(0.001)	(1.1×10^{-3})	(8.4×10^{-4})	(8.8×10^{-4})	(8.0×10^{-4})
Co Vitamin B-12 Normal-Flushing	0.03	7.5×10^{-2}	5.7×10^{-2}	6.3×10^{-2}	6.3×10^{-2}
Co vitalini B-12, Norma-Maning	(0.0008)	(7.5×10^{-3})	(5.7×10^{-3})	(6.3×10^{-3})	(6.3×10^{-3})
Co Vitamin B-12 Normal-No Flushing	0.03	1.1×10^{-1}	8.4×10^{-2}	9.3×10^{-2}	9.3×10^{-2}
Co Thanan D 12, Honna Ho Flaming	(0.0008)	(1.1×10^{-2})	(8.4×10^{-3})	(9.3×10^{-3})	(9.3×10^{-3})
Co Vitamin B-12 PA-Flushing	0.03	2.5×10^{-2}	2.2×10^{-2}	1.9×10^{-2}	1.4×10^{-2}
co manua p 12, 111 Hosning	(0.0008)	(2.5×10^{-3})	(2.2×10^{-3})	(1.9×10^{-3})	(1.4×10^{-3})
Co Vitamin B-12, PA-No Flushing	0.03	2.9×10^{-2}	2.6×10^{-2}	2.3×10^{-2}	1.8×10^{-2}
	(0.0008)	(2.9×10^{-3})	(2.6×10^{-3})	(2.3×10^{-3})	(1.8×10^{-3})
⁸ F FDG	370	1.0×10^{1}	$6.3 \times 10^{\circ}$	3.5×10^{0}	$3.0 \times 10^{\circ}$
	(10)	$(1.0 \times 10^{\circ})$	(6.3×10^{-1})	(3.5×10^{-1})	(3.0×10^{-1})
⁹⁷ Hg Chlormerodrin	4	4.4×10^{-2}	3.0×10^{-2}	2.7×10^{-2}	2.8×10^{-2}
	(0.1)	(4.4×10^{-3})	(3.0×10^{-3})	(2.7×10^{-3})	(2.8×10^{-3})
23 Hippuran	75	2.3×10^{0}	1.8×10^{0}	6.3×10^{-1}	5.9×10^{-1}
	(2)	(2.3×10^{-1})	(1.8×10^{-1})	(6.3×10^{-2})	(5.9×10^{-2})
²³ I IMP	200	$3.8 \times 10^{\circ}$	2.2×10^{0}	1.4×10^{0}	1.2×10^{0}
1.17 ATTEND 7.10	(5.5)	(3.8×10^{-1})	(2.2×10^{-1})	(1.4×10^{-1})	(1.2×10^{-1})
²³ I MIBG					19 5 110309-00100100100200 - 38
phaeochromocytoma	350	6.3×10^{0}	4.2×10^{0}	2.4×10^{0}	$2.2 \times 10^{\circ}$
P	(9.5)	(6.3×10^{-1})	(4.2×10^{-1})	(2.4×10^{-1})	(2.2×10^{-1})

Cont'd

Fetal doses

Some radiopharmaceuticals may cross the placenta and concentrate in fetal tissue i.e. **internal exposure** of the fetus

^{99m}Tc-pertechnetate adm. to the mother

¹³¹I-Nal adm. to the mother

Dose to the embryo/fetus

Russell JR et al, Health Phys 1997:747-755

"Placental transfer of radiopharmaceuticals and dosimetry in pregnancy"

Russell JR et al., Health Phys, 1997:756-769

"Radiation absorbed dose to the embryo/fetus from radiopharmaceuticals"

Table 3b. Absorbed Dose Estimates to the Embryo/Fetus Per Unit Activity of Radiopharmaceutical Administered to the Mother (maternal and fetal self dose contributions).

Radiopharmaceutical	Early mGy/MBq	3 Month mGy/MBq	6 Month mGy/MBq	9 Month mGy/MBq
⁶⁷ Ga Citrate	9.3×10^{-2}	2.0×10^{-1}	1.8 ×(10 ⁻¹)	1.3×10^{-1}
123 Sodium Iodide	2.0×10^{-2}	1.4×10^{-2}	1.1×10^{-2}	9.8×10^{-3}
131I Sodium Iodide	7.2×10^{-2}	6.8×10^{-2}	2.3×10^{-1}	2.7×10^{-1}
99mTc DMSA	5.1×10^{-3}	4.7×10^{-3}	4.0×10^{-3}	3.4×10^{-3}
99mTc DTPA	1.2×10^{-2}	8.7×10^{-3}	4.1×10^{-3}	4.7×10^{-3}
99mTc DTPA Aerosol	5.8×10^{-3}	4.3×10^{-3}	2.3×10^{-3}	3.0×10^{-3}
99mTc Glucoheptonate	1.2×10^{-2}	1.1×10^{-2}	5.3×10^{-3}	4.6×10^{-3}
^{99m} Tc HDP	5.2×10^{-3}	5.4×10^{-3}	3.0×10^{-3}	2.5×10^{-3}
99mTc MAA	2.8×10^{-3}	4.0×10^{-3}	5.0×10^{-3}	4.0×10^{-3}
99mTc MDP	6.1×10^{-3}	5.4 × 10-3	2.7×10^{-3}	2.4×10-3~
99mTc Pertechnetate	1.1×10^{-2}	(2.2×10^{-2})	1.4×10^{-2}	(9.3×10^{-3})
99mTc PYP	6.0×10^{-3}	6.6 × 10 ⁻³	3.6×10^{-3}	2.9×10^{-3}
99mTc RBC-in vitro	6.8×10^{-3}	4.7×10^{-3}	3.4×10^{-3}	2.8×10^{-3}
99mTc RBC-in vivo	6.4×10^{-3}	4.3×10^{-3}	3.3×10^{-3}	2.7×10^{-3}
99mTc Sulfur Colloid-normal	1.8×10^{-3}	2.1×10^{-3}	3.2×10^{-3}	3.7×10^{-3}
99mTc Sulfur Colloid-Liver Disease	3.2×10^{-3}	2.5×10^{-3}	2.8×10^{-3}	2.8×10^{-3}

Dose to the embryo/fetus Stabin MG. *J Nucl Med* 2018:1005-1006

An example of a pregnant female computational phantom

Rensselaer Polytechnic Institute pregnant female models for 3 mo (left), 6 mo (middle), and 9 mo (right) of gestation.

This was originally published in JNM. Michael G Stabin. New-Generation Fetal Dose Estimates for Radiopharmaceuticals. J Nucl Med. 2018;59:1005-1006. © SNMMI.

Radiopharmaceutical	Estimated fetal dose (mGy/MBq*)			
	Early pregnancy	3-mo gestation	6-mo gestation	9-mo gestatio
³ N-ammonia	2.3 x 10 ⁻³	1.9 x 10 ⁻³	2.0 x 10 ⁻³	1.8 x 10 ⁻³
¹⁸ F-FDG	2.6 x 10 ⁻²	1.9 x 10 ⁻²	1.4 x 10 ⁻²	6.9 x 10 ⁻³
¹⁸ F-fluoride	3.1 x 10 ⁻²	2.2 x 10 ⁻²	8.6 x 10 ⁻³	6.7 x 10 ⁻³
³² P-phosphate	8.7 x 10 ⁻¹	1.7 x 10 ⁰	2.3 x 10°	2.3 x 10 ⁰
⁵⁷ Ga-citrate	9.4 x 10 ⁻²	7.1 x 10 ⁻¹	1.1 x 10 ⁻¹	3.2 x 10 ⁻²
¹²³ I-hippuran	4.9 x 10 ⁻²	3.3 x 10 ⁻²	9.2 x 10 ⁻³	6.6 x 10 ⁻³
¹²³ I-IMP	2.2 x 10 ⁻²	1.6 x 10 ⁻²	1.1 x 10 ⁻²	8.9 x 10 ⁻³
¹²³ I-mIBG	2.2 x 10 ⁻²	1.6 x 10 ⁻²	8.2 x 10 ⁻³	6.8 x 10 ⁻³
¹²³ I-Nal	2.3 x 10 ⁻²	1.6 x 10 ⁻²	9.3 x 10 ⁻³	6.3 x 10 ⁻³
²⁵ I-HSA	2.4 x 10 ⁻¹	1.6 x 10 ⁻¹	1.2 x 10 ⁻¹	1.0 x 10 ⁻¹
¹²⁵ I-mIBG	3.2 x 10 ⁻²	2.0 x 10 ⁻²	1.0 x 10 ⁻²	9.1 x 10 ⁻³
¹³¹ I-hippuran	9.8 x 10 ⁻²	6.8 x 10 ⁻²	2.0 x 10 ⁻²	1.4 x 10 ⁻²
¹³¹ I-mIBG	1.2 x 10 ⁻¹	9.6 x 10 ⁻²	7.3 x 10 ⁻²	6.6 x 10 ⁻²
¹³¹ I-Nal	7.6 x 10 ⁻²	1.6 x 10 ⁻¹	2.9 x 10 ⁻¹	2.2 x 10 ⁻¹
¹¹ In-DTPA	9.4 x 10 ⁻²	6.5 x 10 ⁻²	2.1 x 10 ⁻²	1.6 x 10 ⁻²
¹¹¹ In-pentetreotide	1.1 x 10 ⁻¹	7.8 x 10 ⁻²	3.7 x 10 ⁻²	3.0 x 10 ⁻²
¹¹ In-platelets	1.7 x 10 ⁻¹	1.3 x 10 ⁻¹	1.1 x 10 ⁻¹	9.8 x 10 ⁻²
111In-RBCs	2.2 x 10 ⁻¹	1.6 x 10 ⁻¹	1.4 x 10 ⁻¹	1.2 x 10 ⁻¹
111In-WBCs	1.2 x 10 ⁻¹	9.3 x 10 ⁻²	8.6 x 10 ⁻²	8.0 x 10 ⁻²
^{31m} Kr-gas	1.2 x 10 ⁻⁷	1.4 x 10 ⁻⁷	1.9 x 10 ⁻⁷	2.0 x 10 ⁻⁷
¹⁷⁷ Lu-DOTATATE (1)	1.9 x 10 ⁻²	1.9 x 10 ⁻²	2.0 x 10 ⁻²	1.9 x 10 ⁻²
³² Rb-chloride	9.5 x 10 ⁻⁴	3.5 x 10 ⁻⁴	6.3 x 10 ⁻⁴	6.3 x 10 ⁻⁴
¹⁵³ Sm-EDTMP (2)	2.0 x 10 ⁻²	3.6 x 10 ⁻²	1.8 x 10 ⁻²	1.3 x 10 ⁻²
³⁹ Sr-chloride (3)	8.4 x 10 ⁻¹	2.1 x 10°	2.3 x 10°	2.3 x 10 ⁰
^{99m} Tc-disofenin	1.9 x 10 ⁻²	1.3 x 10 ⁻²	7.8 x 10 ⁻³	6.4 x 10 ⁻³
9mTc-DMSA	5.9 x 10 ⁻³	8.8 x 10 ⁻³	3.4 x 10 ⁻³	2.2 x 10 ⁻³
99mTc-DTPA	1.7 x 10 ⁻²	1.1 x 10 ⁻²	3.8 x 10 ⁻³	3.2 x 10 ⁻³
^{9m} Tc-DTPA aerosol	7.6 x 10 ⁻³	5.1 x 10 ⁻²	1.9 x 10 ⁻³	2.1 x 10 ⁻³
9mTc-glucoheptonate	1.6 x 10 ⁻²	1.4 x 10 ⁻²	4.8 x 10 ⁻³	3.7 x 10 ⁻³
99mTc-HMPAO	1.0 x 10 ⁻²	7.2 x 10 ⁻³	4.3 x 10 ⁻³	3.6 x 10 ⁻³
99mTc-MAA	3.2 x 10 ⁻³	1.2 x 10 ⁻²	2.6 x 10 ⁻³	1.7 x 10 ⁻³
99mTc-MAG3	2.6 x 10 ⁻²	1.8 x 10 ⁻²	5.7 x 10 ⁻³	4.1 x 10 ⁻³
^{9m} Tc-MDP	8.1 x 10 ⁻³	9.1 x 10 ⁻³	2.6 x 10 ⁻³	2.1 x 10 ⁻³
9mTc-MIBI rest	1.7 x 10 ⁻²	1.2 x 10 ⁻²	6.9 x 10 ⁻³	5.6 x 10 ⁻³
99mTc-MIBI stress	1.4 x 10 ⁻²	9.5 x 10 ⁻³	6.0 x 10 ⁻³	4.8 x 10 ⁻³
^{9m} Tc-pertechnetate	1.4 x 10 ⁻²	6.2 x 10 ⁻²	1.1 x 10 ⁻²	5.8 x 10 ⁻³

**Shaded rows indicate consideration of placental crossover in the fetal dose estimates

Cont´d

Dose to the embryo/fetus Stabin MG. *J Nucl Med* 2018:1005-1006

An example of a pregnant female computational phantom

Rensselaer Polytechnic Institute pregnant female models for 3 mo (left), 6 mo (middle), and 9 mo (right) of gestation.

This was originally published in JNM. Michael G Stabin. New-Generation Fetal Dose Estimates for Radiopharmaceuticals. J Nucl Med. 2018;59:1005-1006. © SNMMI.

^{99m}Tc-X: 1-10 mGy
¹⁸F-FDG: 10 mGy
¹¹¹In-pentetreotide: 20 mGy

Radiopharmaceutical	Estimated fetal dose (mGy/MBq*)			
- S-5	Early pregnancy	3-mo gestation	6-mo gestation	9-mo gestation
¹³ N-ammonia	2.3 x 10 ⁻³	1.9 x 10 ⁻³	2.0 x 10 ⁻³	1.8 x 10 ⁻³
¹⁸ F-FDG	2.6 x 10 ⁻²	1.9 x 10 ⁻²	1.4 x 10 ⁻²	6.9 x 10 ⁻³
¹⁸ F-fluoride	3.1 x 10 ⁻²	2.2 x 10 ⁻²	8.6 x 10 ⁻³	6.7 x 10 ⁻³
³² P-phosphate	8.7 x 10 ⁻¹	1.7 x 10 ⁰	2.3 x 10 ⁰	2.3 x 10 ⁰
67Ga-citrate	9.4 x 10 ⁻²	7.1 x 10 ⁻¹	1.1 x 10 ⁻¹	3.2 x 10 ⁻²
123I-hippuran	4.9 x 10 ⁻²	3.3 x 10 ⁻²	9.2 x 10 ⁻³	6.6 x 10 ⁻³
1231-IMP	2.2 x 10 ⁻²	1.6 x 10 ⁻²	1.1 x 10 ⁻²	8.9 x 10 ⁻³
123I-mIBG	2.2 x 10 ⁻²	1.6 x 10 ⁻²	8.2 x 10 ⁻³	6.8 x 10 ⁻³
123I-Nal	2.3 x 10 ⁻²	1.6 x 10 ⁻²	9.3 x 10 ⁻³	6.3 x 10 ⁻³
125I-HSA	2.4 x 10 ⁻¹	1.6 x 10 ⁻¹	1.2 x 10 ⁻¹	1.0 x 10 ⁻¹
125I-mIBG	3.2 x 10 ⁻²	2.0 x 10 ⁻²	1.0 x 10 ⁻²	9.1 x 10 ⁻³
131I-hippuran	9.8 x 10 ⁻²	6.8 x 10 ⁻²	2.0 x 10 ⁻²	1.4 x 10 ⁻²
¹³¹ I-mIBG	1.2 x 10 ⁻¹	9.6 x 10 ⁻²	7.3 x 10 ⁻²	6.6 x 10 ⁻²
¹³¹ I-Nal	7.6 x 10 ⁻²	1.6 x 10 ⁻¹	2.9 x 10 ⁻¹	2.2 x 10 ⁻¹
111In-DTPA	9.4 x 10 ⁻²	6.5 x 10 ⁻²	2.1 x 10 ⁻²	1.6 x 10 ⁻²
111In-pentetreotide	1.1 x 10 ⁻¹	7.8 x 10 ⁻²	3.7 x 10 ⁻²	3.0 x 10 ⁻²
111In-platelets	1.7 x 10 ⁻¹	1.3 x 10 ⁻¹	1.1 x 10 ⁻¹	9.8 x 10 ⁻²
111In-RBCs	2.2 x 10 ⁻¹	1.6 x 10 ⁻¹	1.4 x 10 ⁻¹	1.2 x 10 ⁻¹
111In-WBCs	1.2 x 10 ⁻¹	9.3 x 10 ⁻²	8.6 x 10 ⁻²	8.0 x 10 ⁻²
^{81m} Kr-gas	1.2 x 10 ⁻⁷	1.4 x 10 ⁻⁷	1.9 x 10 ⁻⁷	2.0 x 10 ⁻⁷
¹⁷⁷ Lu-DOTATATE (1)	1.9 x 10 ⁻²	1.9 x 10 ⁻²	2.0 x 10 ⁻²	1.9 x 10 ⁻²
82Rb-chloride	9.5 x 10 ⁻⁴	3.5 x 10 ⁻⁴	6.3 x 10 ⁻⁴	6.3 x 10 ⁻⁴
153Sm-EDTMP (2)	2.0 x 10 ⁻²	3.6 x 10 ⁻²	1.8 x 10 ⁻²	1.3 x 10 ⁻²
⁸⁹ Sr-chloride (3)	8.4 x 10 ⁻¹	2.1 x 10°	2.3 x 10 ⁰	2.3 x 10 ⁰
99mTc-disofenin	1.9 x 10 ⁻²	1.3 x 10 ⁻²	7.8 x 10 ⁻³	6.4 x 10 ⁻³
99mTc-DMSA	5.9 x 10 ⁻³	8.8 x 10 ⁻³	3.4 x 10 ⁻³	2.2 x 10 ⁻³
99mTc-DTPA	1.7 x 10 ⁻²	1.1 x 10 ⁻²	3.8 x 10 ⁻³	3.2 x 10 ⁻³
99mTc-DTPA aerosol	7.6 x 10 ⁻³	5.1 x 10 ⁻²	1.9 x 10 ⁻³	2.1 x 10 ⁻³
99mTc-glucoheptonate	1.6 x 10 ⁻²	1.4 x 10 ⁻²	4.8 x 10 ⁻³	3.7 x 10 ⁻³
99mTc-HMPAO	1.0 x 10 ⁻²	7.2 x 10 ⁻³	4.3 x 10 ⁻³	3.6 x 10 ⁻³
99mTc-MAA	3.2 x 10 ⁻³	1.2 x 10 ⁻²	2.6 x 10 ⁻³	1.7 x 10 ⁻³
99mTc-MAG3	2.6 x 10 ⁻²	1.8 x 10 ⁻²	5.7 x 10 ⁻³	4.1 x 10 ⁻³
99mTc-MDP	8.1 x 10 ⁻³	9.1 x 10 ⁻³	2.6 x 10 ⁻³	2.1 x 10 ⁻³
99mTc-MIBI rest	1.7 x 10 ⁻²	1.2 x 10 ⁻²	6.9 x 10 ⁻³	5.6 x 10 ⁻³
99mTc-MIBI stress	1.4 x 10 ⁻²	9.5 x 10 ⁻³	6.0 x 10 ⁻³	4.8 x 10 ⁻³
99mTc-pertechnetate	1.4 x 10 ⁻²	6.2 x 10 ⁻²	1.1 x 10 ⁻²	5.8 x 10 ⁻³

Supplemental Table 1. Embryo/Fetus Doses for Selected Radiopharmaceuticals**

**Shaded rows indicate consideration of placental crossover in the fetal dose estimates

Cont´d

Warning!

Radioactive iodine. In particular radionuclide therapy!

• Radioiodine administered to a pregnant patient: after 8-10 weeks postconception, the fetal thyroid concentrates iodide which crosses the placenta

Warning!

Radioactive iodine. In particular radionuclide therapy!

• Radioiodine administered to a pregnant patient: after 8-10 weeks postconception, the fetal thyroid concentrates iodide which crosses the placenta

Examples:

Administration:

a) 30 MBq ¹²³I⁻ to the mother
b) 0.4 MBq ¹³¹I⁻ to the mother
c) 500 MBq ¹³¹I⁻ to the mother

Mean dose to

the fetus: a) 0.7 mGy b) 0.1 mGy c) 145 mGy

Warning!

Radioactive iodine. In particular radionuclide therapy!

• Radioiodine administered to a pregnant patient: after 8-10 weeks postconception, the fetal thyroid concentrates iodide which crosses the placenta

Examples:

	Mean dose to	Dose to the
Administration:	the fetus:	fetal thyroid:
a) 30 MBq ¹²³ I ⁻ to the mother	a) 0.7 mGy	a) 300 mGy
b) 0.4 MBq ¹³¹ I ⁻ to the mother	b) 0.1 mGy	b) 300 mGy
c) 500 MBq ¹³¹ I ⁻ to the mother	c) 145 mGy	c) 600 Gy (!)

• High fetal thyroid doses from radioiodide can result in permanent hypothyroidism

Treatment of thyroid cancer

3700 MBq at 18 weeks. Fetus: Whole body dose: 700 mGy Fetal thyroid dose: 300 (260-2 000) Gy **Fetus did not survive.**

Berg G et al., Acta Oncol. 2008: 145-149

Figure 1. Gamma camera examination 6 days after administration of 3 700 MBq 131-I in Case 2. Note small uptake in the thyroid bed, uptake in mammary glands, and uptake in the fetal thyroid and fetal body/amniotic fluid. **Pregnancy and radiopharmaceuticals**

Keep the perspective!

- Most diagnostic procedures are done with short-lived radionuclides (such as ^{99m}Tc or ¹⁸F) that do not cause large fetal doses
- Prenatal doses from most properly performed diagnostic procedures present no measurably increased risk of prenatal death, malformation or mental impairment, however..
- Encourage the mother to drink more than usual and to frequent urine voiding, this will reduce the fetal dose and risk of childhood cancer
- Some radionuclides do cross the placenta and can pose fetal risks
- Radioiodine (such as ¹³¹I) may cause significant fetal thyroid harm.
 Give the mother stable iodine if pregnancy is discovered early after the administration.

Thank you for your attention!

Sigrid.leide_svegborn@med.lu.se