Enhancing the efficiency of MC simulations of radiation transport

F. Salvat Pujol1, M. Novak1, S. Guatelli2

15th EURADOS School

\textit{Computational Methods in Dosimetry
State of the Art and Emerging Developments}
Overview

- **Convergence** of a Monte Carlo (MC) simulation

- **Figure of merit** (efficiency) of a MC simulation

- Focus on **essential physics** and **simulation parameters** *FIRST*

- Efficiency enhancement:
 - Software/algorithms side: **variance reduction/biasing** techniques
 - Hardware side: **distributed/parallel** MC runs

- **Exploratory outlook**
 - Applications of **GPUs** in MC simulations of radiation transport
 - Machine learning applications
Convergence and efficiency of a Monte Carlo simulation
Statistical uncertainty in a MC simulation

- 150-MeV p beam impinging on water
- Scoring energy deposition density
- Averaged over transverse plane
- Displayed as a function of depth
Statistical uncertainty in a MC simulation

- $N=500$ primaries
- CPU time: $T_0 \sim 1 \text{s}$
- We focus on the indicated error bar
Statistical uncertainty in a MC simulation

- $N=4N_0=2000$ primaries
- $T \sim 4 \text{ s} = 4T_0$
- Error bar has halved
- $N = 16N_0 = 8000$ primaries
- $T \sim 16 \text{ s} = 16T_0$
- Error bar has halved again

- The relative uncertainty of a MC estimator σ_f/f scales like $\sigma_f/f \sim 1/\sqrt{N}$
- The CPU time scales like $T \sim N$
Figure of merit of a MC simulation algorithm

- Figure of merit (efficiency)
 \[\epsilon = \left(\frac{\bar{f}}{\sigma_f} \right)^2 \frac{1}{T} \]

- Scaling with N:
 - \(\sigma_f / f \sim 1/\sqrt{N} \) and \(T \sim N \)
 - For a given MC simulation problem, \(\epsilon \) is independent of \(N \) (when \(\sim \) converged!)

- \(\epsilon \) is a relative measure of how well computational time is spent towards convergence

- For simulation problems with pathologically slow convergence / low efficiency, one wishes to have techniques to lower \(T \) and/or \(\sigma \), overall increasing \(\epsilon \)
Before “fancy/sophisticated” attempts to enhance the efficiency of MC simulations, one better have a reasonable grasp of

- Underlying physics
- Monte Carlo simulation parameters
Example: Setting particle transport thresholds

- **Energy deposition by 150-MeV protons in water**
 - Dominated by proton ionization losses (collisions with target e-)
 - Mean free path for nuclear inelastic scattering of 150-MeV p in water: **106.8 cm**
 (a few protons undergo a nuclear reaction -> n production -> contribute mostly to tails of the distribution, modulate a bit the intensity of the Bragg peak)
 - Simulation bottleneck: e- production/transport threshold i.e. condensed (dE/dx) vs detailed delta-ray simulation
Threshold settings

- **Exponential increase** of CPU time as one lowers e- thresholds
- An e- threshold of 100 keV is OK if one cares just about a coarse depth-dose curve:
 - CSDA range of 100 keV e- in water: \(~0.014\) cm
 - Histogram spatial resolution: \(~0.16\) cm -> we could have used even higher e- thresholds!
- **Factor 1000 speed-up** just for being minimally aware of what governs the problem

<table>
<thead>
<tr>
<th>e- transport threshold (keV)</th>
<th>CPU time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>176</td>
</tr>
<tr>
<td>1</td>
<td>3000</td>
</tr>
</tbody>
</table>
Particle transport/production thresholds

- MC codes typically provide **default threshold values**, but they are **not guaranteed to be meaningful for your problem**.

- Following e-/e+ to energies lower than one really needs is a ruthless time-intensive **CPU eater**.

- It pays off to set transport threshold such that residual range is small compared to geometry / scoring mesh dimensions (and such that you don’t cut out any relevant physics process...).
Enhancing the MC simulation efficiency in problems with strong attenuation - Region importance biasing
Shielding example

- 500-MeV p beam
- 20 cm W target in air
- Concrete shielding, 3 layers of 25 cm width
- Estimate H*(10) ambient dose equivalent outside shielding
The basic physics

- Proton undergoing nuclear inelastic interactions, mostly in W

- Secondaries produced per incident proton (tallied with FLUKA):
 - 10.8 n -> undergo inelastic interactions mostly in target and concrete
 - 7.4 photons
 - 1.6 p
 - <0.5: d, t, 3He, 4He

- n and photons might manage to make it through the shielding and contribute to the H*(10) ambient dose outside, by and large stopped in concrete
Neutron and gamma fluence

- Particle fluence past shielding is **dominated by neutrons and photons**
- Neutron and photon fluence is gradually **attenuated** by the shielding
- But we still want a statistically significant estimate of the dose outside of the shielding
H*(10) ambient dose equivalent

- $N_{\text{prim}} = 4000$
- $T_{\text{CPU}} = 43$ seconds

NOTE: only meaningful in air/outside shielding...

$\epsilon \sim (0.8^2 \times 43)^{-1} \sim 0.03 \text{ s}^{-1}$
$H^*(10)$ ambient dose equivalent, 4x more primaries

- $N_{\text{prim}} = 16000$
- $T_{\text{CPU}} = 171$ seconds

$\epsilon \sim (0.4^2 \times 171)^{-1} \sim 0.03\, s^{-1}$
Biasing

- Figure of merit of a Monte Carlo simulation:

\[\epsilon = \left(\frac{\bar{f}}{\sigma_f} \right)^2 \frac{1}{T} \]

- Convergence of desired physical observable might be slow, e.g.:
 - Problems with strong attenuation of relevant particle fluence
 - Processes with low cross section (e.g. photonuclear interactions)

- Biasing techniques aim at enhancing the simulation efficiency:
 - Reduce the variance and/or CPU time
 - Leading to an overall larger \(\epsilon \)
Region importance biasing

- Assign numerical **importance** to regions in your geometry

 - **Splitting**
 - Crossing into region with larger importance
 - Particle split into I_2/I_1 particles
 - Reduced statistical weight

 ![Diagram](image)

 \[I_1 = 1 \quad I_2 = 3 \]

 \[w' = w/3 \]

 \[w' = w/3 \]

 \[w' = w/3 \]

 - **Russian roulette**
 - Crossing into region with lower importance
 - Particle reduced to I_2/I_1 particles
 - Enhanced statistical weight

 ![Diagram](image)

 \[I_1 = 3 \quad I_2 = 1 \]

 \[w' = \frac{I_1}{I_2}w = 3w \]
Region **importance** biasing for our shielding problem

(ideally one wishes to avoid importance discrepancies in contiguous regions…)

Regions we do not care so much about

Regions we care a lot about
\(H^*(10) \) ambient dose equivalent, original \(N_{\text{prim}} \), biased

- \(N_{\text{prim}} = 4000 \)
- \(T_{\text{CPU}} = 42 \) seconds

\[\epsilon \sim (0.2^2 \times 42)^{-1} \sim 0.6 \text{ s}^{-1} \]

(efficiency increased by a factor ~20!)

- Particle population is maintained (suppressed) in regions of high (low) importance
- Efficiency **enhancement in the right-hand regions** comes at the **detriment of left-hand regions**
- 20% uncertainty is still a bit far from convergence -> from now on it’s a matter of running for more primaries
A word of caution

- Biasing techniques effectively concentrate simulation effort in desired regions of the geometry / phase space

- It’s the user’s responsibility to ensure no contributions from relevant regions are left out by a too careless biasing scheme

- Particle shower correlations are lost*: no event-by-event analyses
Standard biasing techniques

- Region importance biasing
- Mean free path biasing
- Weight windows
- Ant colony algorithm
- ...

Hardware acceleration
MC as a naturally distributed calculation
Efficiency enhancement from distributed runs

- MC simulation efficiency:
 \[\epsilon = \left(\frac{\bar{f}}{\sigma_f} \right)^2 \frac{1}{T} \]

 Simulation time
 Relative statistical uncertainty (squared)

- For a fixed number of primaries \(N \) distributed in \(n \) jobs running at the same time, the cumulative CPU time \(T \) is the same, but if one takes \(T \) as a *walltime*, the simulation efficiency is enhanced by a factor of nearly \(* n\)

- Negligible coding overhead, no synchronization issues
[Possible bottleneck for large memory requirements]

- n distributed runs \rightarrow n x memory

- **Each instance replicates its own memory** for geometry, cross section, scoring, etc.

- Extreme limit (complicated geometry + e.g. plenty of low-energy neutron cross sections to load + very dense scoring meshes), insufficient memory e.g. if running 16 threads on one CPU

- Codes like e.g. Geant4 allow for **shared memory** (cross sections and geometry) among threads

- A bit of coding overhead / thread synchronization

Ref: https://indico.cern.ch/event/776050/contributions/3240673/attachments/1788898/2913542/Multithreading1.pdf
Best of both worlds: exploit both biasing and distributed/parallel runs!

Twice as many jobs now, leading to:

- $N_{\text{prim}} = 8000$
- $T_{\text{wall}} = 42$ seconds

$\epsilon \sim (0.14^2 \times 42)^{-1} \sim 1.2 \text{ s}^{-1}$

(efficiency increased by a factor ~ 40 wrt to the initial efficiency)

For a vast majority of practical situations, a combination of biasing + distributed runs suffices
Exploratory outlook (hardware): GPUs
GPUs

• **GPU:** graphics processing unit
 • Parallel processing of thousands of computational threads

• **Naturally advantageous scenarios:**
 • Tasks requiring millions of *identical* operations (problem reducing to linear algebra)
 • *Direct, uniform, contiguous memory access*

• **Challenging scenarios:**
 • Tasks with *thread divergence* and *random memory access*
 (…as in a MC simulation of radiation transport!)

• Requires heavy recoding of MC simulation
 (CUDA programming model)
MPEXS

- KEK-based tool for radiotherapy:
 - Limited set of physics: e-, e+, gamma
 - Simple geometry (infinite medium)
 - Water-equivalent material

- Process thousands of independent particle histories in parallel

- Thread divergence: ~50% (!!)
- Nevertheless, speed-up factor of ~400 attainable against single-core CPU.

- Ref: https://indico.cern.ch/event/921244/contributions/3870624/attachments/2045775/3427426/HSF-200527-MPEXS.pdf
Electromagnetic interactions + geometry are among the most CPU time consuming aspects for HEP detector simulations

Ongoing R&D attempting to cast HEP particle transport problem to benefit from massive parallelization on GPU architectures

AdePT:
- Workload balancing, reduce impact of shower tails, maximize number of tracks in flight, etc
- Speed-up observed in simple geometries, pending real geometry (ATLAS/CMS calorimeters)

Celeritas:
- Targetting EM+hadronic physics, re-implementation of subset of G4 physics for GPU, focusing on EM showers

Refs (talks and git repos):
- https://indico.cern.ch/event/1156147/contributions/4854699/attachments/2444243/4188160/HSFGPU_report.pdf
- https://github.com/apt-sim/AdePT
- https://github.com/celeritas-project/celeritas
Exploratory outlook (algorithms): Machine learning attempts

Material kindly provided by Florian Mentzel

Do not miss Habib Zaidi’s interesting talk at 16h!
MC+ML attempts for medical physics applications

- Main ongoing lines of applications of ML to MC simulations:
 - Convolutional neural networks for dose estimation in radiotherapy and imaging
 - Dose denoising from low statistics Monte Carlo simulations,
 - Detector modelling
 - Event selection
 - Replacing particle sources / phase space modelling with generative models

<table>
<thead>
<tr>
<th>Application</th>
<th>Input type</th>
<th>Refs (among others)</th>
<th>Main ML types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose denoising</td>
<td>image</td>
<td>[43, 59, 71, 101, 103, 111, 131, 159]</td>
<td>CNN, U-net</td>
</tr>
<tr>
<td>SPECT scan-time reduction</td>
<td>image</td>
<td>[62, 119, 121]</td>
<td>CNN, U-net</td>
</tr>
<tr>
<td>CBCT scatter modelling</td>
<td>image</td>
<td>[27, 58, 60, 75, 79, 84, 87, 88, 140, 145, 152, 155]</td>
<td>CNN, U-net</td>
</tr>
<tr>
<td>PET attenuation/scatter correction</td>
<td>image</td>
<td>[6, 97]</td>
<td>CNN, U-net</td>
</tr>
<tr>
<td>Detector response modelling</td>
<td>particles</td>
<td>[126, 144]</td>
<td>GAN, MLP</td>
</tr>
<tr>
<td>Source + phase space modelling</td>
<td>particles</td>
<td>[108, 125, 127]</td>
<td>GAN</td>
</tr>
<tr>
<td>Event selection</td>
<td>particles</td>
<td>[8, 12, 40, 46, 93, 98, 100, 102, 107, 157]</td>
<td>MLP, CNN</td>
</tr>
<tr>
<td>Interaction position in scintillators</td>
<td>various</td>
<td>[23, 33, 37, 99, 109, 112, 122, 150, 154]</td>
<td>MLP, CNN</td>
</tr>
</tbody>
</table>

1http://hdl.handle.net/11803/19255
2http://hdl.handle.net/2078.1/thesis:14550

Overview of ML applications in MC simulations (~medical)

- **Dose estimation with neural networks:**
 - Oscar Pastor-Serrano et al., *Millissecond speed* deep learning based proton dose calculation with Monte Carlo accuracy. *Physics in Medicine and Biology*, in press. https://doi.org/10.1088/1361-6560/ac692e

- **Low-statistics Monte Carlo enhancement**

- **Replacing particle sources with generative models**
 - D. Sarrut et al., Generative adversarial networks (GAN) for compact beam source modelling in Monte Carlo simulations. *Physics in Medicine and Biology* 64 215004, 2019. https://doi.org/10.1088/1361-6560/ab3fc1
A sobering comment

- D. Sarrut et al., *Front. Phys.* **9** 738112 (2021)

“For the moment, even if it is envisioned that deep learning can improve simulations, it does not seem certain that it can always replace Monte Carlo.”
Summary
Summary

- Basic **understanding** of **underlying physics** and code **simulation parameters** can already lead to orders of magnitude enhancement of simulation efficiency wrt a careless run.

- **Biasing techniques** as natural methods to enhance simulation efficiency e.g. in desired regions of interest in geometry:
 - Further orders-of-magnitude enhancement, but user responsible for not cutting out relevant corners of phase space.

- **MC naturally distributed** computational problem:
 - Truly parallel codes can reduce memory requirements.

- Exploratory outlook onto applications of **GPUs and ML** to MC:
 - Even beyond: field programmable gate arrays (FPGAs), MC on a chip (MCoaC):
 - Speedups of factor ~90 for TOPAS https://doi.org/10.1016%2Fj.ejmp.2019.06.016
 - Less power (~30 W) than CPUs (~100 W) or GPUs (~300 W)

- **MC code developers share the blame**:
 - Efficiency of interaction/transport/sampling algorithms is on us! Physics performances **1st**, optimization **2nd**.
Thank you very much for your attention!