
1 2

Enhancing the efficiency of MC simulations
of radiation transport

F. Salvat Pujol1, M. Novak1, S. Guatelli2

15th EURADOS School

Computational Methods in Dosimetry
State of the Art and Emerging Developments

Overview

2

 Convergence of a Monte Carlo (MC) simulation

 Figure of merit (efficiency) of a MC simulation

 Focus on essential physics and simulation parameters FIRST

 Efficiency enhancement:

 Software/algorithm side: variance reduction/biasing techniques

 Hardware side: distributed/parallel MC runs

 Exploratory outlook

 Applications of GPUs in MC simulations of radiation transport

 Machine learning applications

3

Convergence and efficiency of a

Monte Carlo simulation

Statistical uncertainty in a MC simulation

4

150-MeV p beam

impinging on water

Scoring energy

deposition density

Averaged over

transverse plane

Displayed as a

function of depth

5

N=N0=500 primaries

CPU time: T0~1 s

We focus on the

indicated error bar

Statistical uncertainty in a MC simulation

6

N=4N0=2000 primaries

T ~ 4 s = 4T0

Error bar has halved

Statistical uncertainty in a MC simulation

7

 N=16N0 = 8000 primaries

 T ~ 16 s = 16T0

 Error bar has halved
again

 The relative uncertainty of
a MC estimator σf/f scales
like

σf/f ~ 1/sqrt(N)

 The CPU time scales like

T ~ N

Statistical uncertainty in a MC simulation

Figure of merit of a MC simulation algorithm

8

 Figure of merit (efficiency)

 Scaling with N:
 σf/f ~ 1/sqrt(N) and T ~ N

 For a given MC simulation problem, ϵ is independent of N (when ~converged!)

 ϵ is a relative measure of how well computational time is spent towards
convergence

 For simulation problems with pathologically slow convergence / low
efficiency, one wishes to have techniques to lower T and/or σ, overall
increasing ϵ

CPU time

Relative statistical uncertainty (squared)

9

Before “fancy/sophisticated” attempts to

enhance the efficiency of MC simulations, one

better have a reasonable grasp of

- Underlying physics

- Monte Carlo simulation parameters

Example: Setting particle transport thresholds

10

 Energy deposition by 150-MeV protons in water

 Dominated by proton ionization losses (collisions with target e-)

 Mean free path for nuclear inelastic scattering of 150-MeV p in water: 106.8 cm

(a few protons undergo a nuclear reaction -> n production -> contribute mostly to tails of the distribution,

modulate a bit the intensity of the Bragg peak)

 Simulation bottleneck: e- production/transport threshold

i.e. condensed (dE/dx) vs detailed delta-ray simulation

p WATER

Threshold settings

11

 Exponential increase of CPU time as one lowers e- thresholds

 An e- threshold of 100 keV is OK if one cares just about a coarse depth-dose curve:

 CSDA range of 100 keV e- in water: ~0.014 cm

 Histogram spatial resolution: ~0.16 cm -> we could have used even higher e- thresholds!

 Factor 1000 speed-up just for being minimally aware of what governs the problem

e- transport threshold (keV) CPU time (s)

100 3

50 8

10 72

5 176

1 3000

Particle transport/production thresholds

12

 MC codes typically provide default threshold values, but they are not

guaranteed to be meaningful for your problem

 Following e-/e+ to energies lower than one really needs is a ruthless time-

intensive CPU eater

 It pays off to set transport threshold such that residual range is small

compared to geometry / scoring mesh dimensions (and such that you

don’t cut out any relevant physics process…)

13

Enhancing the MC simulation efficiency

in problems with strong attenuation

-

Region importance biasing

Shielding example

14

500-MeV p beam

20 cm W target in air

Concrete shielding, 3 layers

of 25 cm width

Estimate H*(10) ambient

dose equivalent outside

shielding

500 MeV p

AIR

CONCRETE

W

The basic physics

15

Proton undergoing nuclear inelastic interactions, mostly in W

Secondaries produced per incident proton (tallied with):

 10.8 n -> undergo inelastic interactions mostly in target and concrete

 7.4 photons

 1.6 p

 <0.5: d, t, 3He, 4He

 n and photons might manage to make it through the shielding and
contribute to the H*(10) ambient dose outside

By and large stopped in concrete

Neutron and gamma fluence

16

 Particle fluence past shielding is dominated by neutrons and photons

 Neutron and photon fluence is gradually attenuated by the shielding

 But we still want a statistically significant estimate of the dose outside of the shielding

H*(10) ambient dose equivalent

17

NOTE: only meaningful in air/outside shielding…

 Nprim= 4000

 TCPU= 43 seconds

ϵ~(0.82 x 43)-1 ~ 0.03 s-1

H*(10) ambient dose equivalent, 4x more primaries

18

 Nprim= 16000

 TCPU= 171 seconds

ϵ~(0.42 x 171)-1 ~ 0.03 s-1

Biasing

19

Figure of merit of a Monte Carlo simulation:

Convergence of desired physical observable might be slow, e.g.:

 Problems with strong attenuation of relevant particle fluence

 Processes with low cross section (e.g. photonuclear interactions)

Biasing techniques aim at enhancing the simulation efficiency:

 Reduce the variance and/or CPU time

 Leading to an overall larger ϵ

Simulation time

Relative statistical uncertainty (squared)

Region importance biasing

20

Assign numerical importance to regions in your geometry

Splitting

 Crossing into region with larger
importance

 Particle split into I2/I1 particles

 Reduced statistical weight

Russian roulette

 Crossing into region with lower
importance

 Particle reduced to I2/I1 particles

 Enhanced statistical weight

Region importance biasing for our shielding problem

21

1

1
5

25

1
0.2

0.04

Regions we do not care so much about Regions we care a lot about

1250.008

(ideally one wishes to avoid importance

discrepancies in contiguous regions…)

H*(10) ambient dose equivalent, original Nprim, biased

22

 Nprim= 4000

 TCPU= 42 seconds

ϵ~(0.22 x 42)-1 ~ 0.6 s-1

(efficiency increased by a factor ~20!)

 Particle population is maintained (suppressed) in regions of high (low) importance

 Efficiency enhancement in the right-hand regions comes at the detriment of left-hand regions

 20% uncertainty is still a bit far from convergence -> from now on it’s a matter of running for more primaries

A word of caution

23

Biasing techniques effectively concentrate simulation effort in

desired regions of the geometry / phase space

 It’s the user’s responsibility to ensure no contributions

from relevant regions are left out by a too careless

biasing scheme

Particle shower correlations are lost*: no event-by-event

analyses

Standard biasing techniques

24

Region importance biasing

Mean free path biasing

Weight windows

Ant colony algorithm

…

 Ref: S. Garcia-Pareja et al., Front. Phys. 9 718873 https://doi.org/10.3389/fphy.2021.718873

https://doi.org/10.3389/fphy.2021.718873

25

Hardware acceleration

MC as a naturally distributed calculation

26

Job 1 Job 2 … Job N

INPUT FILE

Random seed 1 Random seed 2 Random seed N…

Merge counts/histograms

Simulation time

Relative statistical uncertainty (squared)

Efficiency enhancement from distributed runs

27

MC simulation efficiency:

For a fixed number of primaries N distributed in n jobs running
at the same time, the cumulative CPU time T is the same, but
if one takes T as a walltime, the simulation efficiency is
enhanced by a factor of nearly* n

Negligible coding overhead, no synchronization issues

[Possible bottleneck for large memory requirements]

28

 n distributed runs n x memory

 Each instance replicates its own memory for geometry, cross section,
scoring, etc.

 Extreme limit (complicated geometry + e.g. plenty of low-energy neutron
cross sections to load + very dense scoring meshes), insufficient memory
e.g. if running 16 threads on one CPU

 Codes like e.g. Geant4 allow for
shared memory (cross sections
and geometry) among threads

 A bit of coding overhead / thread
synchronization

 Ref: https://indico.cern.ch/event/776050/contributions/3240673/attachments/1788898/2913542/Multithreading1.pdf

Best of both worlds: exploit both biasing and distributed/parallel runs!

29

Twice as many jobs now, leading to:

 Nprim= 8000

 Twall= 42 seconds

ϵ~(0.142 x 42)-1 ~ 1.2 s-1

(efficiency increased by a

factor ~40 wrt to the initial efficiency)

• For a vast majority of practical situations,

a combination of biasing + distributed runs suffices

30

Exploratory outlook (hardware):

GPUs

GPUs

31

nVidia Titan RTX GPU

• GPU: graphics processing unit

• Parallel processing of thousands of computational threads

• Naturally advantageous scenarios:

• Tasks requiring millions of identical operations (problem reducing to linear algebra)

• Direct, uniform, contiguous memory access

• Challenging scenarios:

• Tasks with thread divergence and random

memory access

(…as in a MC simulation of radiation transport!)

• Requires heavy recoding of MC simulation

(CUDA programming model)

MPEXS

32

 KEK-based tool for radiotherapy:

 Limited set of physics: e-,e+,gamma

 Simple geometry (infinite medium)

 Water-equivalent material

 Process thousands of independent
particle histories in parallel

 Thread divergence: ~50% (!!)

 Nevertheless, speed-up factor of ~400
attainable against single-core CPU.

 Ref:
https://indico.cern.ch/event/921244/contributions/3870624/attachments/2045775/3427426/HSF-200527-MPEXS.pdf

https://indico.cern.ch/event/921244/contributions/3870624/attachments/2045775/3427426/HSF-200527-MPEXS.pdf

High-energy-physics community

33

 Electromagnetic interactions + geometry are among the most CPU time
consuming aspects for HEP detector simulations

 Ongoing R&D attempting to cast HEP particle transport problem to benefit from
massive parallelization on GPU architectures

 AdePT:

 Workload balancing, reduce impact of shower tails, maximize number of tracks in flight, etc

 Speed-up observed in simple geometries, pending real geometry (ATLAS/CMS calorimeters)

 Celeritas:

 Targetting EM+hadronic pysics, re-implementation of subset of G4 physics for GPU, focusing on
EM showers

 Refs (talks and git repos):
https://indico.cern.ch/event/1156147/contributions/4854699/attachments/2444243/4188160/HSFGPU_report.pdf
https://github.com/apt-sim/AdePT
https://github.com/celeritas-project/celeritas

https://indico.cern.ch/event/1156147/contributions/4854699/attachments/2444243/4188160/HSFGPU_report.pdf
https://github.com/apt-sim/AdePT
https://github.com/celeritas-project/celeritas

34

Exploratory outlook (algorithms):

Machine learning attempts

Material kindly provided by Florian Mentzel

Do not miss Habib Zaidi’s interesting talk at 16h!

MC+ML attempts for medical physics applications

35

 Main ongoing lines of applications of ML to MC simulations:

 Convolutional neural networks for dose estimation in radiotherapy and imaging

 Dose denoising from low statistics Monte Carlo simulations,

 Detector modelling

 Event selection

 Replacing particle sources / phase space modelling with generative models

https://www.frontiersin.org/articles/10.3389/fphy.2021.738112/full

https://www.frontiersin.org/articles/10.3389/fphy.2021.738112/full

Overview of ML applications in MC simulations (~medical)

36

 Dose estimation with neural networks:

 Mentzel et al., Fast and accurate dose predictions for novel radiotherapy treatments in heterogeneous phantoms using

conditional 3D-UNet generative adversarial networks. Medical Physics 2022;1–16. https://doi.org/10.1002/mp.15555

 Oscar Pastor-Serrano et al., Millisecond speed deep learning based proton dose calculation with Monte Carlo accuracy.

Physics in Medicine and Biology, in press. https://doi.org/10.1088/1361-6560/ac692e

 Low-statistics Monte Carlo enhancement

 X. Xudong et al., Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose

Calculation of Nasopharyngeal Carcinoma Radiotherapy, Technology in Cancer Research and Treatment 2021; 20:

15330338211062415 https://doi.org/10.1177/15330338211062415

 Z. Peng et al., MCDNet – A Denoising Convolutional Neural Network to Accelerate Monte Carlo Radiation Transport

Simulations: A Proof of Principle With Patient Dose From X-Ray CT Imaging. IEEE Access (7) 76680 – 76689, 2019.

https://doi.org/10.1109/ACCESS.2019.2921013

 Replacing particle sources with generative models

 D. Sarrut et al., Generative adversarial networks (GAN) for compact beam source modelling in Monte Carlo simulations.

Physics in Medicine and Biology 64 215004, 2019. https://doi.org/10.1088/1361-6560/ab3fc1

 D. Sarrut et al., Modeling complex particles phase space with GAN for Monte Carlo SPECT simulations: a proof of

concept. Physics in Medicine and Biology 66 055014, 2021. https://doi.org/ https://doi.org/10.1088/1361-6560/abde9a

https://doi.org/10.1002/mp.15555
https://doi.org/10.1088/1361-6560/ac692e
https://doi.org/10.1177/15330338211062415
https://doi.org/10.1109/ACCESS.2019.2921013
https://doi.org/10.1088/1361-6560/ab3fc1
https://doi.org/10.1088/1361-6560/abde9a

A sobering comment

37

D. Sarrut et al., Front. Phys. 9 738112 (2021)

“For the moment, even if it is envisioned that deep

learning can improve simulations, it does not seem

certain that it can always replace Monte Carlo.”

38

Summary

Summary

39

 Basic understanding of underlying physics and code simulation parameters can already
lead to orders of magnitude enhancement of simulation efficiency wrt a careless run

 Biasing techniques as natural methods to enhance simulation efficiency e.g. in desired regions
of interest in geometry:

 Further orders-of-magnitude enhancement, but user responsible for not cutting out relevant corners of phase space

 MC naturally distributed computational problem

 Truly parallel codes can reduce memory requirements

 Exploratory outlook onto applications of GPUs and ML to MC

 Even beyond: field programmable gate arrays (FPGAs), MC on a chip (MCoaC)

 Speedups of factor ~90 for TOPAS https://doi.org/10.1016%2Fj.ejmp.2019.06.016

 Less power (~30 W) than CPUs (~100 W) or GPUs (~300 W)

 Promising applications and speed-ups for condensed matter spin system simulations (Ising model):
https://arxiv.org/pdf/1602.03016.pdf

 MC code developers share the blame:

 Efficiency of interaction/transport/sampling algorithms is on us! Physics performances 1st, optimization 2nd.

https://doi.org/10.1016%2Fj.ejmp.2019.06.016
https://arxiv.org/pdf/1602.03016.pdf

Thank you very much

for your attention!

