15th EURADOS SCHOOL Computational Methods in Dosimetry State of the Art and Emerging Developments Belgrade, 23rd June 2022

MONTE CARLO RADIATION TRANSPORT SIMULATIONS

Vladimir Marković

Department of Physics
Faculty of Science
University of Kragujevac
Serbia
vmarkovic@kg.ac.rs

MONTE CARLO SIMULATON or MONTE CARLO METHOD

- Monte Carlo method general method of solving problems by using random sampling and random numbers to obtain numerical results
- Randomness is used to solve problems that can be either deterministic or random in nature

EXAMPLE OF MONTE CARLO METHOD

Estimating PI

$$\frac{P_{\text{CIRCLE}}}{P_{\text{SOARE}}} = \frac{\pi r^2}{4r^2} = \frac{\pi}{4}$$

$$\frac{P_{\text{CIRCLE}}}{P_{\text{SQARE}}} = \frac{N_{\text{POINTS INSIDE OF CIRCLE}}}{N_{\text{POINTS INSIDE OF SQARE}}}$$

$$\pi = 4 \cdot \frac{N_{\text{POINTS INSIDE OF CIRCLE}}}{N_{\text{POINTS INSIDE OF SQARE}}}$$

Total number of points = 248100

Estimated $\pi = 3.14156$

HISTORY OF MONTE CARLO **METHOD**

1777. Buffon's needle problem¹. Comte de Buffon evaluated the probability of tossing a needle onto a sheet with strips

$$p = \frac{2}{\pi} \frac{l}{t}$$

1886. Laplace² suggested that this can be used calculate the value of π.

 $\pi = \frac{1}{1}$ needles crossing lines = 101 $\pi = \frac{\text{number of needles}}{\text{needles crossing lines}} = 3.109$

l = 2t number of needles = 314

- 1. G. Comte de Buon. Essai d'arithmetique morale, volume 4. Supplement a l'Histoire Naturelle, 1777.
- 2. P. S. Laplace. Theorie analytique des probabilites, Livre 2. In Oeuvres completes de Laplace, volume 7, Part 2, pages 365 366. L'academie des Sciences, Paris, 1886.
- 3. https://www.youtube.com/watch?v=3VHp E5FfQM
- 4. https://en.wikipedia.org/wiki/Buffon%27s needle problem

Belgrade, **Developments**,

HISTORY OF MONTE CARLO RADIATION TRANSPORT METHOD

- John von Neumann, Stanislaw Ulam and Nicholas Metropolis
- Enrico Fermi

DEVICES USED FOR SIMULATION OF NEUTRON TRANSPORT

- **ENIAC** Electronic Numerical Integrator And Computer
- MANIAC I (Mathematical Analyzer Numerical Integrator and Automatic Computer Model I)
- **FERMIAC**

INSIGHT IN RADIATION TRANSPORT

Let us start from simple example – **two-dimensional movement** of Brownian like particle inside of rectangle with dimensions $a \times b$

 More simplification – free path between any two collision is fixed; particle at the point of collision exhibit only random change of direction

Starting point of particle is unknown and should be randomly chosen

Define coordinate system

■ For this problem it is natural to use Cartesian coordinate system

- Need for random number generator
 - let rand returns random number in interval [0, 1]

■ STEP1

- X=a*rand
- Y=b*rand

■ STEP 2

move particle in arbitrary direction with step length d

Problem!

- How to chose arbitrary direction?
- Draw circle with radius d with center in starting point

$$x'^2 + y'^2 = d^2$$

Polar coordinates

Introduce new coordinate system

$$x' = \rho' \cos \varphi, \ y' = \rho \sin \varphi$$
$$\rho' = d, \ \varphi \in [0, 2\pi]$$

Generate random angle

$$\varphi = 2\pi \cdot \text{rand}$$

Calculate next point and move particle to that point

$$x_1 = x + d\cos\varphi$$

$$y_1 = y + d \sin \varphi$$

■ STEP3

Repeat procedure

PROBABILITY THEORY CONTINIOUS VARIABLES

- Random variable variable which value is obtained from repeatable process and its values can not be predicted with certainty (e.g. counting quanta from radioactive source)
- \blacksquare x continuous random variable which takes values in the interval [x_{min} , x_{max}]

$$P\{x \mid x_1 < x < x_1 + dx\} = p(x_1)dx$$

Probability

$$P\{x \mid x_1 < x < x_1 + dx\} = \lim_{N \to \infty} \frac{n}{N}$$

- n number of values of x that falls into interval [x_1 , x_1 +dx]
- \blacksquare *N* number of generated *x* values

Probability Density Function - PDF

- Properties of PDF $p(x) \ge 0$ $\int_{0}^{\infty} p(x) dx = 1$
- Standard deviation

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$$

$$\left\langle x^{2}\right\rangle = \int_{x_{\min}}^{x_{\max}} x^{2} \cdot p(x) dx$$

Uniform distribution

$$U(x); x \in [x_{\min}, x_{\max}]$$

$$U(x) = \begin{cases} 1/(x_{\text{max}} - x_{\text{min}}) & x_{\text{min}} \le x \le x_{\text{max}} \\ 0 & x < x_{\text{min}} \land x > x_{\text{max}} \end{cases}$$

Cumulative Distribution - CD

■ Cumulative distribution is defined as $CD(x) = \int_{0}^{x} p(x) dx$

$$P(x \mid a < x < b) = \int_{a}^{b} p(x)dx = CD(b) - CD(a)$$

$$p(x) = \frac{dCD(x)}{dx}$$

■ For uniform distribution

$$U(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & x < 0 \land x > 1 \end{cases}$$

$$CDU(x) = x, x \in [0, 1]$$

Method of Random Sampling Inverse function method

- Let us introduce new variable ξ , where $x \to \xi$ as $\xi = f(x)$
- We derived new PDF, where $p_{\xi}(\xi)d\xi = p(x)dx$
- If we chose $\xi = CD(x), \xi \in [0, 1]$

$$p_{\xi}(\xi) = p(x)\frac{dx}{d\xi} = p(x)\left(\frac{d\xi}{dx}\right)^{-1}$$
$$p_{\xi}(\xi) = p(x)\left(\frac{d\xi}{dx}\right)^{-1} = p(x)\left(\frac{dCD(x)}{dx}\right)^{-1}$$

- $\blacksquare \quad \text{Since} \quad p(x) = \frac{dCD(x)}{dx}$
- We derive $p_{\xi}(\xi) = p(x)(p(x))^{-1} = 1$

IMPORTANT

 ξ is uniformly distributed on interval [0, 1]

Developments, Belgrade, 23rd June 2022

EXAMPLE
$$PDF \equiv C \cdot x^2, x \in [0, 10]$$

Inverse function method EXAMPLES

$$\xi = CD(x) = \int_{x_{\min}}^{x} p(x) dx$$

Uniform distribution

$$U_{a,b}(x) = \frac{1}{b-a} \qquad x = a + \xi(b-a)$$

Exponential distribution

$$p(x) = \frac{1}{\lambda} e^{-\frac{x}{\lambda}}, \quad x \ge 0$$
$$x = -\lambda \ln(1 - \xi) \equiv -\lambda \ln(\xi)$$

- Exponential distribution is the PDF of the free path of particle between interaction events
- λ is mean free path

Now our example with twodimensional random movement of Brownian particle can be more realistic (we know how to sample free path)

Free path

$$d = -\lambda \ln(\xi)$$

$$\xi = \text{rand}$$

To sample free path, we need to know mean free path λ

$$\varphi = 2\pi \cdot \text{rand}$$

$$x_1 = X + d\cos\varphi$$

$$y_1 = Y + d \sin \varphi$$

WE STILL DO NOT KNOW HOW TO CREATE rand FUNCTION

a

23rd June 2022 Belgrade, Developments

Rejection sampling method

- Inverse transformation method is based on functional dependance between variables ξ and x
- In some cases, this function is unknown analytically or integral $\xi = \int p(x)dx$ cannot be solved
- Sample x from arbitrary known PDF U(x)e.g.
- Sample random variable from U(x)x = rand
- Sample new random number $\xi = \text{rand}$
- If C- ξ <p(x) accept x
- Else reject x

TWO DIMENSIONAL VARIABLES

a

- Random number generator
 - rand returns random number in interval [0, 1]

■ STEP 1

- X=a*rand
- Y=b*rand

■ STEP 2

$$\varphi = 2\pi \cdot \text{rand}$$

$$x_1 = x + d\cos\varphi$$

$$y_1 = y + d\sin\varphi$$

TWO DIMENSIONAL VARIABLES POINT ON THE SPHERE

■ In theory of radiation transport direction of motion of particle can be described with unit vector

$$\vec{d} = (u, v, w) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

■ Probability for point to have coordinates on unit sphere is

$$p(\theta,\phi)d\theta d\phi = \frac{ds}{S} = \frac{\sin\theta d\theta d\phi}{4\pi}$$

$$p_{\theta}(\theta) = \frac{\sin\theta}{2}$$

$$p_{\theta}(\phi) = \frac{\sin\theta}{2}$$

$$p_{\phi}(\phi) = \frac{1}{2\pi}$$

$$p_{\phi}(\phi) = \frac{1}{2\pi}$$

$$\xi = \int_{x_{min}}^{x} p(x)dx$$

By inverse method we get

$$\theta = \arccos(1 - 2\xi_1)$$
 $\phi = 2\pi\xi_2$

Now we can move particle in arbitrary direction in space for randomly sampled free path. If starting point is (x_0, y_0, z_0)

$$\vec{d} = (u, v, w) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

final point is $(x_0 + x, y_0 + y, z_0 + z)$

where $(x, y, z) = (d \sin \theta \cos \phi, d \sin \theta \sin \phi, d \cos \theta)$

$$d = -\lambda \ln(\xi_3)$$

Example with Mathematica code

RANDOM NUMBERS

- First step of Monte Carlo simulations are numerical sampling of relevant variables from specified PDF.
- Random sampling algorithms are based on the use of RANDOM NUMBERS uniformly distributed in the interval [0, 1]
- TRUE random numbers cannot be generated from algorithm process, they should be sampled from some true random physical process
- For the computer based simulations PSEUDO RANDOM numbers are in use

PSEUDO RANDOM NUMBERS

Random Seed Algorithm Pseudo random number

- Pseudo random numbers are not true random numbers, since they are generated using algorithm
- Even do they are not true random numbers, if you are given with sequence of pseudo random numbers, it should past randomness tests
- QUOTE from N. METROPOLIS¹

"How are the various decisions made? To start with, the computer must have a source of uniformly distributed psuedo-random numbers.

A much used algorithm for generating such numbers is the so-called von Neumann "middle-square" digits." Here, an arbitrary n-digit integer is squared, creating a 2n-digit product. A new integer is formed by extracting the middle n-digits from the product."

$$123456^2 = 15$$
 241 383 936 241 $383^2 = 58$ **265 752** 689 ...

```
C
                          FUNCTION RAND
      FUNCTION RAND (DUMMY)
  This is an adapted version of subroutine RANECU written by F. James
   (Comput. Phys. Commun. 60 (1990) 329-344), which has been modified to
   give a single random number at each call.
   The 'seeds' ISEED1 and ISEED2 must be initialised in the main program
   and transferred through the named common block /RSEED/.
      IMPLICIT DOUBLE PRECISION (A-H, 0-Z), INTEGER*4 (I-N)
      PARAMETER (USCALE=1.0D0/2.147483563D9)
      COMMON/RSEED/ISEED1, ISEED2
      I1=ISEED1/53668
      ISEED1=40014*(ISEED1-I1*53668)-I1*12211
      IF(ISEED1.LT.0) ISEED1=ISEED1+2147483563
C
      I2=ISEED2/52774
      ISEED2=40692*(ISEED2-I2*52774)-I2*3791
      IF(ISEED2.LT.0) ISEED2=ISEED2+2147483399
      IZ=ISEED1-ISEED2
      IF(IZ.LT.1) IZ=IZ+2147483562
      RAND=IZ*USCALE
      RETURN
      END
                 1. F. Salvat et al, PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron
                 and Photon transport, Workshop proceedings, Barcelona, Spain 2011
```

- All interaction events are simulated in chronological succession event by event
- Set of all events is often called history of one particle
- In opposite of Brownian particle, radiation quanta can exhibit interaction in each event
- In interactions secondary particles can be created

INTERACTION MODELING -CROSSECTTIONS

- Radiation interact with medium through various competing mechanisms. Each interaction event is associated with appropriate differential cross section DFS
- Double deferential cross section $\sigma(\Omega,W) = \frac{d^2\sigma}{d\Omega dW}$
- $\blacksquare \quad \text{Total cross section} \quad \sigma = \int\!\!\int\!\sigma\big(\Omega,W\big)d\Omega dW$

MEAN FREE PATH AND SCATTERING MODEL

Total cross section σ can be related to mean free path λ for given medium

$$N = N_{\rm A} \frac{\rho}{A_{\rm M}}$$
 $A_{\rm M} = n_i A_i$ $\lambda = \frac{1}{N\sigma}$

Suppose that particle can interact via two independent mechanisms A, and B

$$\frac{d^2\sigma_A}{d\Omega dW} \qquad \frac{d^2\sigma_B}{d\Omega dW} \qquad \sigma_T = \sigma_A + \sigma_B$$

$$\lambda_{T} = \frac{1}{N\sigma_{T}} \qquad \lambda_{A} = \frac{1}{N\sigma_{A}} \qquad \lambda_{B} = \frac{1}{N\sigma_{B}} \qquad \frac{1}{\lambda_{T}} = \frac{1}{\lambda_{A}} + \frac{1}{\lambda_{B}}$$

$$p_{A} = \frac{\sigma_{A}}{\sigma_{T}} \qquad p_{B} = \frac{\sigma_{B}}{\sigma_{T}} \qquad \frac{p_{A}}{0} \qquad \frac{p_{B}}{1}$$

23rd June 2022 Belgrade, Developments

GNERATION OF RANDOM TRACK -Markov process

Generation of random tracks using detailed simulation

SECONDARY PARTICLES

- VACUUM MATERIAL Incident Track Radiation Structures Field Photon Neutron Fast Ion
- In collision event secondary particles can be created
 - photons, electrons, delta rays, ...
- In Detail Simulation generated secondary particles are scored, their properties are stored in appropriate variables
- Secondary particles are simulated after simulation of primary particle (the one that generated secondaries) and are treated in same manner as primary one

VARIANCE REDUCTION METHODS

- Statistical uncertainty of relevant quantities calculated using Monte Carlo method can be reduced, without increasing number of histories and enlarging computation time using VARIANCE REDUCTION METHODS
- This is done by optimizing particular problem, and Variance Reduction methods are problem dependent
- Lowering statistical uncertainty of relevant quantity is at expense of uncertainties of other quantities

- In cases of low interaction probability, variance can be high, since that events happens very really
- Example 100 keV electrons imparted on thin foil. Radiate events are much less probable than elastic and inelastic scattering
- If we want to calculate Bremsstrahlung photon spectrum great deal of histories in needed because of low probability of radiative events

VARIANCE REDUCTION METHODS Interaction forcing

■ Variance Reduction of Bremsstrahlung photon spectrum – force radiative events to happened more frequently

$$\lambda_{\mathrm{A}} o \lambda_{\mathrm{A},f}$$
 replace mean free path with shorter one

$$F = \frac{\lambda_{\rm A}}{\lambda_{{\rm A},f}} > 1 \quad \text{interaction probability increases for factor } F$$

 By increasing interaction probability simulation is biased. Un biasing requires introducing of weighting factors

VARIANCE REDUCTION METHODS Interaction forcing

- Associate weighting factors for primary particle
- $\omega = 1$
- Prediction of secondary particles is alerted by interaction forcing. Associate weighting factors for secondary particles
- Give weight to e.g. deposited energy if it is calculated from interaction forcing particles
- Interaction forcing reduce variance for some calculation, but increase for others and can insert bias in simulation

PHOTON INTERACTIONS

Belgrade, 23rd June 2022 Developments,

PHOTON CROSS SECTION

1. F. Salvat et al, PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon transport, Workshop proceedings, Barcelona, Spain 2011s

ATTENUATION COEFFICIENTS

$$\frac{\mu}{\rho} = \frac{N_{\rm A}}{A_{\rm M}} \left(\sigma_{\rm Ra} + \sigma_{\rm Co} + \sigma_{\rm ph} + \sigma_{\rm pp} \right)$$

ATTENUATION COEFFICIENTS

$$\frac{\mu}{\rho} = \frac{N_{\rm A}}{A_{\rm M}} \left(\sigma_{\rm Ra} + \sigma_{\rm Co} + \sigma_{\rm ph} + \sigma_{\rm pp} \right)$$

ELECTRON AND POSITRON INTERACTION

Visualization of track structure

- Electron
- Liquid water
- 10 MeV
- Bunch of 50 electrons

Let us simulate 8 random free paths

Repeat simulation and you will get another history

MULTIPLE SCATTERING THEORY

- Generate final point after movement of 8 free paths from PDF –Normal distribution
- 8 free paths are condensed and can be simulated in one step

- If you repeat simulation new end point will be obtained.
 This is not detail simulation
- In this way histories of particles are condensed – Multiple Scattering Theory

MULTIPLE SCATTERING THEORY

There Is lose of information's when condensing histories

If you want to check weather particle left the box, using condensed histories, you can get wrong answer

(X,Y)

 \mathcal{A}

MULTIPLE SCATTERING THEORY

 There Is lose of information's when condensing histories

If you want to check weather particle left the box, using condensed histories, you can get wrong answer

■ The multiple scattering theory implemented in condensed simulations are approximate and may lead to systematic errors

■ For charged particles, Multiple scattering theory is need, rather than choice

 Large number of interactions per small track length – detailed simulation is time consuming, even impossible to perform

Molière's Theory of Multiple Scattering

BASIC STRUCTURE OF MONTE CARLO TRANSPORT CODE

15th

THANK YOU FOR YOUR ATTENTION