

HOW USEFULL IS THE DOSE ASSESSMENT FOR THE MANAGEMENT OF AN IRRADIATION ACCIDENT

Jean-François BOTTOLLIER-DEPOIS

Céline BASSINET Isabelle CLAIRAND Christelle HUET François TROMPIER

EURADOS School June 15th, 2023, Porto

Radiological accidents: *different situations of overexposure*

Multidisciplinary expertise and technical support to hospitals

Why dosimetry?

Medical management of the victims

Dose is a marker of damages to tissues and organs which helps the physicians:

- to evaluate the radio-induced damages
- to define the therapeutic strategy
- Aim of the dosimetry: assessment of the dose and the dose distribution in the body

How assess the dose?

...by taking into account the specificity of the accident

Each accident is particular: type of source, type of radiation, energy, exposure time, scenario...

...by using complementary means

- Clinical observations: symptomatology
- Biological dosimetry: study of DNA misrepairs
- Physical dosimetry:
 - Dose reconstruction (experimental & numerical techniques)
 - Dosimetry on materials collected on the victim

Experimental tools

Dummies equipped with dosemeters

Numerical tools (1)

Numerical anthropomorphic model + Monte Carlo calculations

Numerical tools (2)

Voxel phantom: dose distribution (SESAME software)

Retrospective dosimetry using ESR

ESR *(electron spin resonance)* dosimetry: measurement of free radicals created in some irradiated materials

- « X band » spectrometer (9 GHz) : sample 100 mg

- « Q band » spectrometer (34 GHz) : sample 2-3 mg

Biological dosimetry

Numbering of chromosome aberrations in the blood

THREE EXAMPLES REPRESENTATIVE OF IRRADIATION ACCIDENT

Chile (December 2005) – <u>localized irradiation</u>

Belgium (March 2006) – whole body irradiation

Peru (January 2012) – localized irradiation to the hands +whole body

Chile accident: circumstances

Place and date: building site of a manufactory, December 15, 2005

Context: a worker found a ¹⁹²Ir source from a gammagraphy device. He handled it with his bare hands and put it in the back left-hand pocket of his pants before it was detected by someone with an electronic dosemeter.

Source characteristics: Iridium-192, 3.3 10¹² Bq (90 Ci)

source

Irradiation characteristics:

- exposure duration: 10 min in the back left-hand pocket of his pants;

- suspicion of localised exposures: buttock, hands, head and torso

The IAEA appointed IRSN to investigate on-site; The victim was transferred to France on 29 December 2005 for treatment at the Percy Military Hospital

Medical problematic / support of dosimetry

Localized irradiation \implies medical management = surgery?

- Need for an adequate surgery i.e. remove the correct quantity of tissue to avoid the propagation of necrosis + graft of mesenchymal stem cells (MSC)
- Healthy tissue in appearance the first days or weeks can finally lead to a necrosis if the dose > 25 Gy

Objective of dosimetry: provide the position in depth and in surface of the 25 Gy isodose

Chile accident: *numerical dose reconstruction*

CT images

Voxel phantom

Calculations of the dose distribution in different points within the body

Chile accident: dose reconstruction (10 min exposure)

Chile accident: *surgery* (*Percy Hospital*)

Surgery guided by the dosimetry 5 cm 1900 Gy 25 Gy 20 Gy 10 Gy 5 Gy 1 Gy Dose distribution grafts Surgery

10 months after

surgery + skin and MSC

Chile accident: ESR measurements on teeth

Accident in Belgium: *circumstances*

Place and date: industrial irradiation facility, Fleurus, March 11^{th} , 2006

Context: a worker went inside a cell of irradiation whereas the source was not in the storage position

Source characteristics: cobalt-60, 30000 TBq (800 000 Ci)

Irradiation characteristics :

- exposure duration: 20 s
- whole body exposure

The victim was transferred to the Haematological Department of the Percy Military Hospital on March 31st, 2006

Patient was in medullar aplasia - bone marrow areas were irradiated

Accident in Belgium: *circumstances*

Accident in Belgium: *circumstances*

Medical problematic / support of dosimetry

Important to know if some areas of bone marrow were underexposed (below 6 Gy if homogeneous) to lead to a spontaneous secondary resumption of bone marrow activity in these areas.

Support of dosimetry to estimate the dose to the different bone marrow areas

Accident in Belgium: on site measurements

Positioning of dosimeters in a section of the phantom

Tissue-equivalent anthropomorphic phantom fitted with dosimeters and positioned in the irradiation room

Peru accident: circumstances

Place and date: hydroelectric company in Chilca, January 12, 2012

Context: 3 workers were conducting in-situ gammagraphy activities in several pipes. The ¹⁹²Ir source was not in the lead container but somewhere in the flexible cable

Source characteristics: Iridium-192, 3.6 TBq (98 Ci)

Irradiation characteristics:

- exposure duration: ~ 2.5 hours
- localised exposure to the hands + whole body exposure

Peru accident: localized irradiation signs

day 6

day 7

Worker 1

Medical problematic / support of dosimetry

Taking into account the testimony of the operators and regarding the clinical observations and the initial dosimetric data, the <u>dose is very high and</u> <u>heterogeneous</u>, <u>both to the whole body and to the hands</u>. These results can be explained only if we consider a <u>global exposure</u> in the vicinity of the source for several hours and a <u>very localised exposure</u> (finger(s) in contact to the collimator for a very short time).

Localized irradiation + Whole body irradiation MSC graft? Amputation? Hematopoietic problem?

Support of dosimetry to estimate the dose at the finger(s) level and the dose heterogeneity in the body

Peru accident: dose reconstruction

Global exposure configuration

The calculations show that 40 cm is roughly the mean distance between the source and the victim consistent with the 2.5 hours scenario and the dosimetric data results at whole body level and hands obtained by measurements

	Mean trunk dose (Gy)	Tooth (Gy)	Chest (location of the passive dosemeter) (Gy)	Hands (Gy)
Measurement	2.5 – 3.5*	4**	6-7***	~35**** (nails)
Calculations	2.8	3.2	6	20 (hands)

* biological dosimetry

** EPR dosimetry - average between both teeth

*** individual passive dosemeter (from dosimetry lab in Peru)

**** EPR dosimetry - average among nails (total dose: global + localised irradiations)

Localised exposure configuration

The additional dose at <u>the entrance</u> of the left index (in contact to the source holder) is <u>70 Gy</u> for 20 s, and the dose at the <u>nail level is 10 Gy</u>

Peru accident: dose assessment at hands using ESR measurements on fingernails and bones

Conclusion

Dosimetry: a key point for therapeutic strategy

- Complementary techniques are needed depending on the accident configuration: biological dosimetry, calculations, ESR...
- Localised irradiation on tissue: surgery area? (calculation with voxel phantoms)
- Localised irradiation at hand: necrosis? MSC graft? (ESR on fingernails)
- Whole body irradiation: hematological symptoms? (biological dosimetry, calculation)

