16th EURADOS School, June 15 2023

sck cen

Johan Camps & Pieter De Meutter

Case studies The current nuclear risk in Europe

Belgian Nuclear Research Centre

Content - Nuclear Risks

Risk = probability of occurrence x consequences or impact

Event at NPP in Ukraine:

 Focus on impact at larger distances

- Contamination level
- Detections at early warning stations

SCK CEN/51828857

sck cen

Use of a nuclear weapon:

- Short intro to nuclear weapons and Russian arsenal
- Effects of a nuclear detonation

- Basic impact calculations for an explosion in Brussels
- Impact on Western Europe for an explosion in Ukraine

Content - Nuclear Risks

Risk = probability of occurrence x consequences or impact

Event at NPP in Ukraine:

- Focus on impact at larger distances
 - Contamination level
 - Detections at early warning stations

Use of a nuclear weapon:

- Short intro to nuclear weapons and Russian arsenal
- Effects of a nuclear detonation
- clear
- Basic impact calculations for an explosion in Brussels
- Impact on Western Europe for an explosion in Ukraine

Potential impact from a hypothetical release from a Ukrainian NPP (on Western Europe)

Initiating event: loss of cooling with release from reactors or spent fuel **Calculation set-up**:

- Lagrangian stochastic particle model *Flexpart*, coupled with archived numerical weather data from the ECMWF Forecasts
- Simulations for the 4 NPP locations in Ukraine and a 6 hour release of
 - A "passive" air tracer (noble gas): Xe133, Xe135 (Kr85)
 - 1131
 - Cs137 (Cs134)
- Total of 6000 simulations: 500 release moments x 3 radionuclide species x 4 locations

Ouput: probability to exceed certain levels (contamination levels , ambient dose rate from cloud)

Example – Rivne NPP (unit source term)

Cs-137 act conc [µBq/m³]

Fictive case! Rivne NPP

Cs-137 total deposition [Bq/m²]

Zaporizhzhia NPP

Cs137 ZNPP - 0.1 PBq - Probability of total deposition > 10kBq/m²

ZNPP - 10 PBq - Probability of total deposition > 10kBq/m²

ZNPP - 1 PBq - Probability of total deposition > 10kBq/m²

ZNPP - 100 PBq - Probability of total deposition > 10kBq/m²

sck cen

7 ISC: Public

Rivne NPP Cs137

RNPP - 0.1 PBq - Probability of total deposition > 10kBq/m²

RNPP - 10 PBq - Probability of total deposition > 10kBq/m²

RNPP - 1 PBq - Probability of total deposition > 10kBq/m²

RNPP - 100 PBq - Probability of total deposition > 10kBq/m²

SCK CEN/51828857

Radiation networks: EURDEP

- EUropean Radiological Data Exchange Platform (EURDEP)
- Approx. 5000 stations
- Ambient dose equivalent rate H^{*}[10]

SCK CEN/51828857

sck cen

 Cs137: 10 kBq/m² → *H*^{*}[10] = 30 nSv/h

RNPP - 10 PBq - Probability of dose rate > 10 nSv/h

sck cen |

RNPP - 100 PBq - Probability of dose rate > 10 nSv/h

ISC: Public

Content - Nuclear Risks

Risk = probability of occurrence x consequences or impact

Event at NPP in Ukraine:

 Focus on impact at larger distances

- Contamination level
- Detections at early warning stations

SCK CEN/51828857

sck cen

Use of a nuclear weapon:

- Short intro to nuclear weapons and Russian arsenal
- Effects of a nuclear detonation
- Basic impact calculations for an explosion in Brussels
- Impact on Western Europe for an explosion in Ukraine

Nuclear Weapons

Fission-based weapons

2 types:

- Gun-type: U-235 critical mass ()
- Implosion-type: Pu-239 critical mass()

Further possible properties:

- Tamper to increase inertia of fission fuel
- Neutron source (⁴He+ ⁹Be → ¹²C + n) to speed-up exponential energy increase (1 shake = 10 ns)
- Boosted: fusion fuel in centre

Nuclear Weapons

Fusion-based weapons (thermonuclear weapons)

- → Reducing last fission stage + neutron transparent: neutron bomb
- → salted bomb: add matearisl with high activation cross section → increase neutron activation

- Boosted fission (²³⁵U and ²³⁹Pu + ³H and ²H)
- ⁶Li deuteride as fusion fuel
- ⁶Li+n → ³H + ⁴He
- X-rays will heat & vaporize polystyrene foam → compression of U-238 tamper
- Fusion, neutrons will add yield via fission Pu spark & U tamper)
- \rightarrow Fission-Fusion-Fission

1 kT = 1000 ton TNT equivalent = 4.2 $10^{12} \text{ J} = 2.6 \ 10^{25} \text{ MeV}$

Yield/Russian nuclear forces

Non-nuclear (chemical explosives) \leq 11 ton TNT

Open literature, e.g.:

- Stockholm International Peace Research Institute
- Nuclear Notebook: How many nuclear weapons does Russia have in 2022?
 - 4500 nuclear weapons: 1600 operational , 2900 reserve (and 1500 waiting for dismantling);
 - Yield: 10 800 kT (Highest Yield: Tsar Bomba 50 MT)
 - Vectors the nuclear triad: short range to *intercontinental* ballistic missiles (ICBM) - submarine launched ballistic missile (SLBM) and aircrafts with nuclear capability

Rusland probeert nieuwe nucleaire langeafstandsraket "Satan 2" uit en raakt testdoel 5.000 kilometer ver

Nuclear Notebook: How many nuclear weapons does Russia have in 2022? (Feb 2022)

Type/name	Russian designation	Launchers	Year deployed	Warheads x yield (kilotons)	Total warheads
Strategic offensive weapons					
ICBMs					
SS-18 M6 Satan	RS-20V	40	1988	10 x 500/800 (MIRV)	4001
SS-19 M3 Stiletto	RS-18 (UR-100NUTTH)	0	1980	6 x 400 (MIRV)	02
SS-19 M4	? (Avangard)	6	2019	1 x HGV	6
SS-25 Sickle	RS-12M (Topol)	9 ^a	1988	1 x 800	9
SS-27 Mod 1 (mobile)	RS-12M1 (Topol-M)	18	2006	1 x 800?	18
SS-27 Mod 1 (silo)	RS-12M2 (Topol-M)	60	1997	1 x 800	60
SS-27 Mod 2 (mobile)	RS-24 (Yars)	153	2010	4 x 100? (MIRV)	6124
SS-27 Mod 2 (silo)	RS-24 (Yars)	20	2014	4 x 100? (MIRV)	80
SS-X-29 (silo)	RS-28 (Sarmat)	-	(2022)	10 x 500? (MIRV)	-
Subtotal		306			1,1855
SLBMs					
SS-N-18 M1 Stingray	RSM-50	0/0	1978	3 x 50 (MIRV)	04
SS-N-23 M2/3	RSM-54 (Sineva/Layner)7	5/80	2007	4 x 100 (MIRV)	320°
SS-N-32	RSM-56 (Bulava)	5/80	2014	6 x 100 (MIRV)	480°
Subtotal		10/160 ¹⁰			800"
Bombers/weapons					
Bear-H6/16	Tu-95MS6/MS16/MSM	55	1984/2015	6-16 x AS-15A ALCMs	448
				or 14 x AS-23B ALC	
Blackjack	Tu-160/M	13	1987/2021	12 x AS-15B ALCMs	132
Subtotal		6812		or AS-23B ALCM, bombs	58019
Subtotal strategic offensive forces		53414			2.56515

Table 1. Russian nuclear forces, 2022

Non strategic and defensive ...

Characteristics nuclear explosions

- Important differences depending on location explosion
- Differences in radioactive particle size distribution: important for fall-out
- Highest potential impact for humans: near surface explosion (at some altitude above ground)

Effects of a nuclear blast

sck cen

SCK CEN/51828857

- Fireball
 - Many times more brilliant than the sun \rightarrow blindness
 - In <1 sec: max. diameter of 840 m diameter (50 kT)
 - In 1 minute: cooled down \rightarrow doesn't glow anymore
- Mushroom cloud: debris-filled + radioactivity (fission fragments and activation products)

Energy partitioned as follows:

- 50% Blast and ground shock
- 35% Thermal Radiation
- 15% Ionizing Radiation
 - 5% Prompt (first minute) → prompt radiation effects and electromagnetic pulse (EMP)
 - 10% Delayed (minutes to years) \rightarrow fallout

Effects of a nuclear explosion

Fallout

sck cen

SCK CEN/51828857

- Large amount of fission & activation products
 - Highest activities of short-lived radionuclides
 - Fusion weapon: 40% less fission products compared with 100% fission weapon
 - Radioiodine's (I-131, I-133, ...): up to 20% of total activity in cloud
 - Particle size can be from mm to < μm
 - Effect on deposition and respirable fraction
 - Ground shine of fallout dominant

Impact calculations

Hotspot – Fast assessment tool by Lawrence Livermore National Laboratory (version 3.0)

- Based on work of Glasstone & Dolan (Glasstone, S, and Dolan, P J. The Effects of Nuclear Weapons. Third edition. United States: N. p., 1977. Web. doi:10.2172/6852629)
- 100% fission weapon assumed (fusion weapon: fall out "only" ~40%)
- Near-surface explosion at Brussels
- Both direct effects and fall-out calculations
- Fall-out: typical Belgian meteo-conditions (no rain, 3.5 m/s wind speed)

Google 100%

Camera: 11,520 m 5

Direct effects as a function of yield:

10 kT

50 kT

150 kT

Fall-out as a function of yield:

10 kT 50 kT 150 kT

Reality would look more like this

Total dose (previous slides) versus change in fall-out contamination, (dose rate)

 From: Rapid Radiological/Nuclear Consequence Assessment Tools, LLNL-TR-682, 2015

Potential victims

sck cen

50 kT, Brussels (Stat-Bel)

Location	Brussels	
	50 kT	
		Population
Туре	r (km)	impacted
Blast - 100% lethality	0.45	198
Blast - 50% lethality	0.53	304
Blast - threshold shattered glass injury	6.99	755.155
Thermal - 3rd degree	2.61	70.808
Prompt - 95% lethal, weeks	1.71	20.739
Prompt - 50% lethal, weeks	1.79	24.278
		Population
	area (km²) - 6h	Impacted
Fallout - 10 Sv (lethal)	6.7	7.600
Fallout - 4 Sv (50% lethal)	15	15.000
Fallout - 1 Sv	47	37.500

What if Russia would use a nuclear weapon in Ukraine?

Is there an impact on Western Europe?

ElectroMagnetic Pulse (EMP): cf. Starfish Prime test (8 July 1962) – High altitude test (400 km) - Damage 1445 km from explosion

Fallout:

- meteorological conditions, particle distribution, yield ...
- Experience from nuclear testing:
 - Rain-out of radioactivity in Tahiti at 1200 km distance from test-site (Mururoa French Polynesia) 17 July 1974
 - Dose to population: 0.8 mSv
 - Contamination levels would require food countermeasures today in Europe (trade)
- Modelling (Flexpart with numerical weather data, ECMWF)
 - Meteo conditions: case of 12 August 2022
 - Height distribution of radioactivity
 - Particle size

Case study Fictive!

Explosion of 50 kT

I131 deposition Particle size:

- 0,6 µm
- 6 µm
- 60 µm

Fixed height

Case study Fictive!

Explosion of 50 kT

I131 deposition Particle size:

- 0,6 µm
- 6 µm
- 60 µm

Fixed height

Case study Fictive!

Explosion of 50 kT

I131 deposition Particle size:

- 0,6 µm
- 6 µm
- 60 µm

Fixed height

Questions?

sck cen