Environmental monitoring and the use of unmanned aerial systems for radiological surveillance

Arturo'Vargas''(UPC)

June 15th, 2023 EURADOS Annual Meeting

Porto, Portugal

Content

- 1. OVERVIEW
- 2. ROTARY WING UNMANNED AERIAL SYSTEMS UNMANNED AERIAL VEHICLES (UAV)+ GAMMA DETECTORS
- 3. GROUND CONTROL STATION AND ON-LINE VISUALIZATION
- 4. CALIBRATION
- 5. DATA ANALISYS. FLIGHT CAMPAIGNS EXAMPLES
- 6. **REMOTE ALPHA DETECTION**

Overview unmanned aerial systems for radiological surveillance

An airborne unmanned radiological system requires **careful hardware design**, **reliable software implementation** and the **traceable calibration of the detector**.

Rotary Wing Unmanned Aerial system (RWUAS)

The booming drone industry which **brings regular advances in UAV technology** led to recommend **fully decouple** the data acquisition system from the aerial platform. On the other side, **the use of the position and tilt from the UAV could be also a benefit**.

Calssification of RWUAS

It is common to classify RWUAS into three categories:

Ty

	Small	Medium	Big
Payload	< 1 kg	< 6 kg	< 50 kg
Detector	CZT, Csl	Nal, LaBr ₃ , CeBr ₃	HPGe, Nal of high volume
Range	< 2 km	< 5 km	< 20 km
Flight time	< 15 min	< 30 min	< 90 min
Price	≈ 1 k€	≈ 10 k€	≈ 250 k€
Licensing	Easy*	Normal**	Complicated***

* UAVs below 2 kg TOW do not require any licensing

** Under 25 kg TOW, a drone pilot license is required

*** For aircrafts with TOW > 25 kg the full pilot license is required

Proposed RWUAS category choice for a given radiological emergency scenario

Scenario	Scale	Area	Requirements	UAMS category
Terrorism (dirty bomb)	Small	Populated (stadium, market, festival, etc.)	Quiet and small system to prevent panic, hot spot detection	Small
Illicit trafficking	Small	Not populated (harbour, customs, railway, etc.)	Fast and efficient source localization	Small or medium
Radiation source transportation accident	Small	Localized (city, road, etc.)	Radioactive spill boundary detection; panic prevention if public involved	Small
	Medium	Dispersed (water bodies, air transfer)	Radioactive substance dispersion tracking (e.g., follow river path)	Medium or big
Nuclear accident	Small	NPP territory	Fast assessment, localization and decontamination	Small or medium
	Medium	NPP vicinity (closest town, countryside)	Fast assessment, possible temporary evacuation zones detection	Medium or big
	Big	NPP exclusion zone (30 km radius)	Evacuation stage: Cover tens of km ² as fast as possible Assessment stage: Detailed mapping of exclusion zone	Big, then medium

There is no optimal dronedetector configuration. The choice of a specific configuration depends on the radiological situation and the assessment of the overall scenario. Therefore, the selection of the configuration should fit the most common scenarios that are previously forecasted by the end-user.

Position and altitude

GNSS: Global Navigation Satellite Systems

- Position with precision of a couple of meters that can be extended to a few cm by using RTK (real-time kinematics) which is very expensive
- Precise time stamp for synchronization

Distance measurement

- The most common are the 1D-Lidar. The 2D –Lidar area also used for Digital Elevation Map
- The use of cameras for photogrammetry (3D maps) could be also an important information for where the scenario has changed due to an explosion, fire,....

Lidar -1D- point measurement

Altitude

Comparison of a laser, barometric and GNSS systems to measure the height AGL in a former Uranium mine

Ground Control Station. On-line visulaization

Detector Calibration

- Linearity
- Energy resolution
- Inherent
 contamination
- Cosmic response
- Drone effect
- Stability
- Angular response

Temperature stability

Temperature stabilization (climate chamber with Ra-226 source)

Different method:

- Temperature
- correction by formula
- Natural peaks
- Inherent background
- LED peak
 - Machine learning

Calibrated Sepctra

This issue is especially prominent for **scintillation detectors with photomultiplier tubes**, since the scintillating crystal and the PMT have temperature sensitivities. This makes the correction of the temperature drift quite a difficult task.

Angular response

Annual Meeting 2023, Porto

EURADOS

Calibration

Calibration

Background CeBr₃ H*(10) rate at 20 m height

Decision threshold (ISO11929-4) a^* =1.645 σ

Annual Meeting 2023, Porto

Response **CeBr₃ net H*(10) rate** to a Cs-137 point source of 345 MBq at different heights

14

Example: former uranium mine

Ambient dose equivalent rate, H*(10) rate

• For *H*(10) rate* calculation, conversion coefficient method is recommended because is accurate, precise and robust.

$$\dot{H}^{*}(10) = \sum_{i=1}^{j} w_{i} n_{i} E_{i}$$

 n_i count rate in the the energy bin i (s⁻¹)

E_i is the mid energy of bin *i w_i* is the conversion coefficient for bin *i* (usually MC simus) (nSv h⁻¹/s⁻¹ keV)

Robust and fast calculations

• Man Made Count Rate (MMCR) is a robust and fast method to detect artificial radioactivity.

MMCR= $\sum_{320}^{1360} n(E) - ratio \sum_{1360}^{3000} n(E)$

When no artificial radionuclides, then:

ratio= $\frac{\sum_{320}^{1360} n(E)}{\sum_{1360}^{3000} n(E)}$

H*(10) and MMCR results

Activity concentrations

• TOTAL • Az-228 • N-314 • Cb-137 • K-40 • Pb-214 • Ti-208

Full spectra Analysis is used for activity calculation. Monte Carlo simulations to obtain cps per Bq/kg or Bq or Bq/m² for each radionuclide Minimize the measured and simulated spectra.

Chernobyl campaign

Localizer - detector

Localizer - detector

Video preparedness: https://www.youtube.com/watch?v=IV45uvionKI&t=46s. Localizador.html × + ٥ 🕐 🛈 Archivo | C:/localizador_v3/Localizador%20BCN%20drone%20center/Localizador.html \$4 ∿≣ 団 10) rate uSv 0.12-0.16 0.16-0.2 0.2-0.24 0.24-0.28 0.28-0.32 0.32-0.36 0.36-0.4

Localizer - detector

Remote Alpha detection by UAV (remoteAlpha project)

Radioluminescence at a glance

Schematic representation of **air ionization by** α **-particles.**

Air molecules emit fluorescent light (radioluminescence) in the UV range between 200 nm and 400 nm.

 $\begin{array}{l} \underline{\text{Range in air:}}\\ \alpha\text{-particles} \rightarrow & 0,04 \text{ m}\\ \text{UV light} & \rightarrow & 500 \text{ m} \end{array}$

RemoteAlpha

RemoteAlpha

Testing of optical detection systems with Am-241 sources (1 MBq, 10 MBq and 100 MBq)

UVC (260 nm) scan of 1 MBq Am-241

Mapping real time

Visualization of the detected count rate in real time during the flight with 5 UVC source emitters

Area: 15 m x 30 m Separation between lines: 70 cm Height: 5 m AGL Speed: 1 m/s Measured of count rate: registered every 100 ms

Mapping real time

