



# CONTRIBUTION OF COMPUTATIONAL DOSIMETRY TO THE MANAGEMENT OF RADIOLOGICAL ACCIDENTS

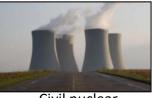
Christelle Huet IRSN – Research dosimetry department



#### Context

#### [ RADIOLOGICAL ACCIDENTS AND MEDICAL MANAGEMENT

- ~ 600 radiation overexposure accidents between 1980 and 2013 (from Coeytaux et al., 2015)
- 2390 overexposed people 190 died
- 32% radiation therapy, 31% fluoroscopy, 27% industry
- Most common type of irradiation: local or partial body irradiation


Medical management of victims of external exposure : priority to diagnosis

- Identification of potential victims
- DiagnosisTreatment
- Small-scale accidents

Medium to large-scale accidents



Industrial applications



Civil nuclear

Defense



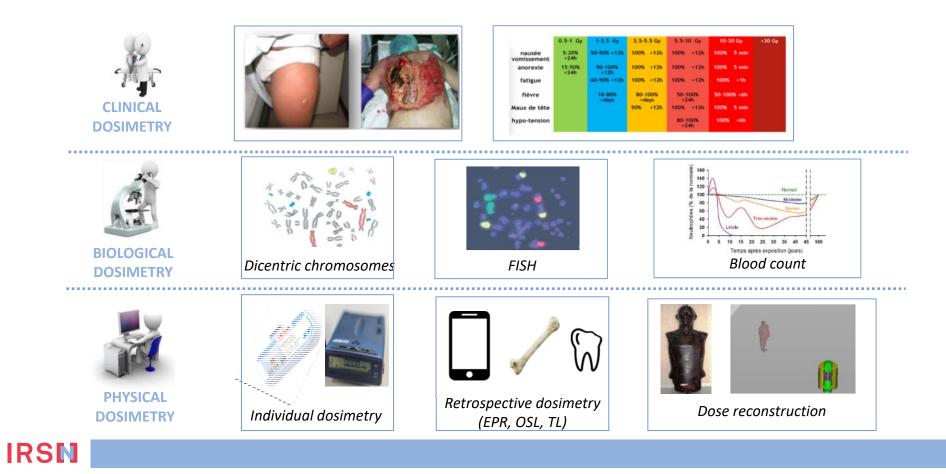
Medical use



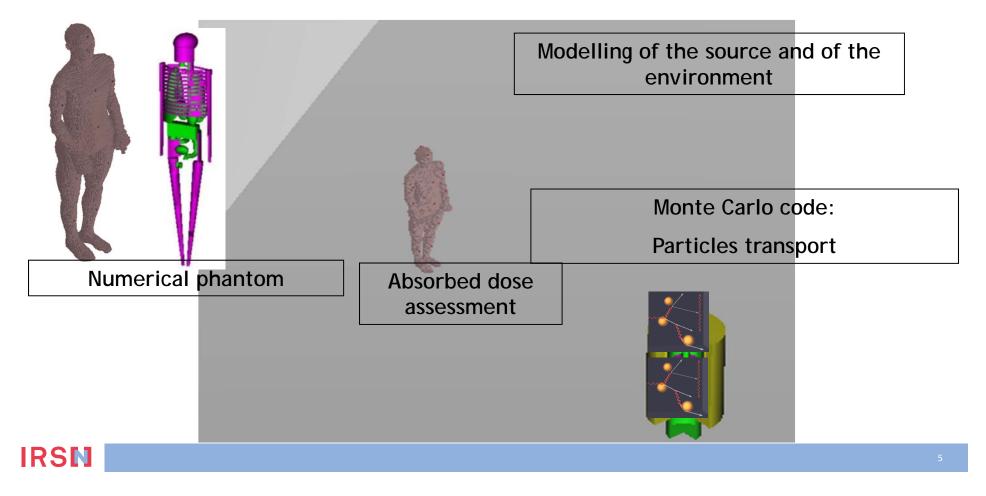
#### Context

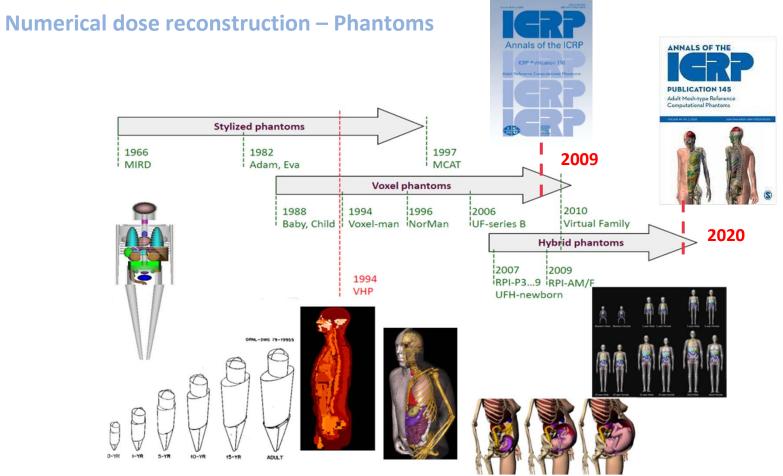
#### [ MEDICAL MANAGEMENT AND DOSIMETRY

Dose is an indicator of tissue or organ damage that helps clinicians to :


- assess radiation-induced damage
- define the therapeutic strategy

**Dosimetry challenge** : assessment of the dose and the dose distribution within the body


Dosimetric needs and methods vary depending on the type of accident (whole body versus local irradiation, small versus medium/large scale accidents, ...)




#### How to assess the dose?



### **Numerical dose reconstruction - principle**





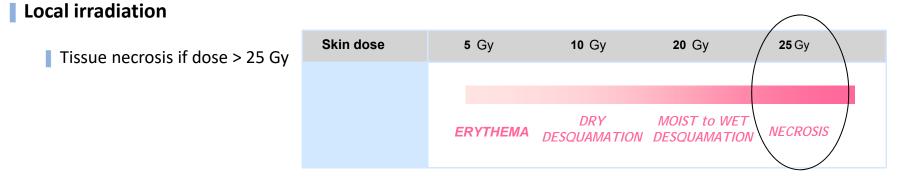


#### **Diagnosis and definition of the therapeutic strategy – Medical need**

#### Whole body irradiation

Key clinical issue : spontaneous secondary resumption of bone marrow activity ?

Are there areas of bone marrow underexposed?


Support of computational dosimetry : heterogeneity of the dose distribution within the body, in particular at the level of the bone marrow areas

No need for anatomical precision

Use of generic phantoms (stylized, voxel, MESH)

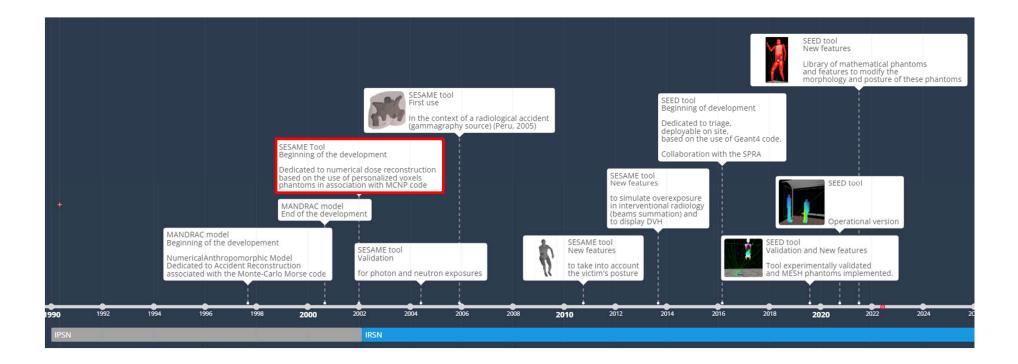


## **Diagnosis and definition of the therapeutic strategy – Medical need**



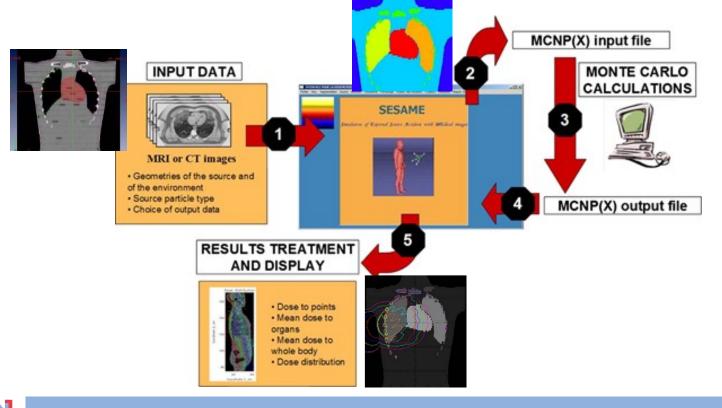
Key clinical issue : surgery?

Is there any tissue irradiated at more than 25 Gy that needs to be removed?


Support of computational dosimetry : to define the dose distribution at the lesion level

Need for anatomical precision

Use of personalized voxel phantoms created from the victim's images



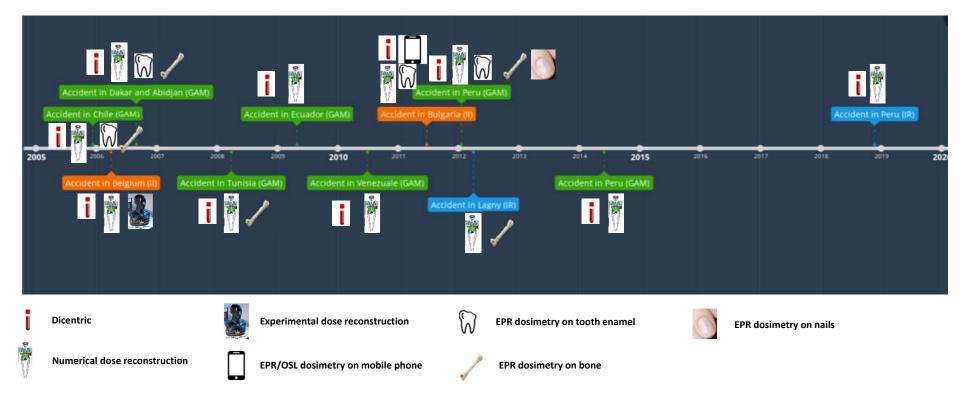

#### Numerical dose reconstruction at IRSN – Timeline of evolution






## Localized irradiation—SESAME tool (Simulation of External Sources Accident with MEdical images) (Huet *et al.*, 2009)

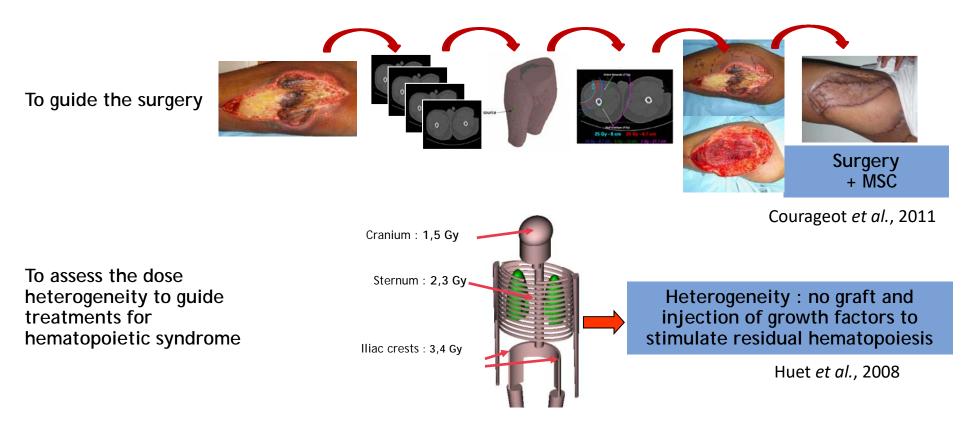



#### Numerical dose reconstruction at IRSN – Timeline of evolution



Lemosquet et al., 2004; Huet et al., 2009; Huet et al., 2019




#### Dose assessment in case of radiological accidents



Some case studies to be presented in the talk given by JF Bottollier-Depois



#### Medical management of small scale accidents – contribution of computational dosimetry



#### **Dosimetric triage - context**

Primary purpose of the initial-phase dose assessment : identify individuals in potential danger of short-term deterministic effects

No example of large-scale-event case studies in which initial-phase dose assessments for large numbers of people were carried out following acute exposure -> conceptual approaches

European consensus concerning the medical management of mass radiation exposure (Vaux de Cernay, 2005) :

- time to onset of early phase clinical signs of acute radiation syndrome (first 24h)
- importance and rapidity of the drop of blood lymphocytes (first 48 h)
- Non specific

## Need for complementary and alternative methods





#### **Dosimetric triage**

#### Multibiodose project

- 7 dosimetric assays tested
- dosimetric triage categorisation in three different categories

#### Current R&D in biological and physical dosimetry worldwide

- To reduce the time of analysis and to lower the detection limits of the techniques used for diagnosis
- To investigate less invasive methods, new materials and new biomarkers
- To develop tools deployable on site

#### Increase triage capacity and harmonize practice

- Laboratory network
- Intercomparisons



Training

IRSN



Table 9.1 Radiation Dose Triage Levels for Symptoms and Medical Care Suggested by the Multibiodose Project in the European Union (Jaworska et al., 2014).

| Category | Triage dose Symptoms and care                                                                                                               |                                                                                                  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| Low      | <i gy<="" th=""><th colspan="4">Unlikely to develop symptoms of<br/>acute radiation syndrome (ARS); no<br/>immediate care required</th></i> | Unlikely to develop symptoms of<br>acute radiation syndrome (ARS); no<br>immediate care required |  |  |  |
| Medium   | I to 2 Gy                                                                                                                                   | May experience mild or delayed ARS<br>symptoms; follow-up care may be<br>necessary               |  |  |  |
| High     | >2 Gy                                                                                                                                       | Moderate-to-urgent care may be required                                                          |  |  |  |

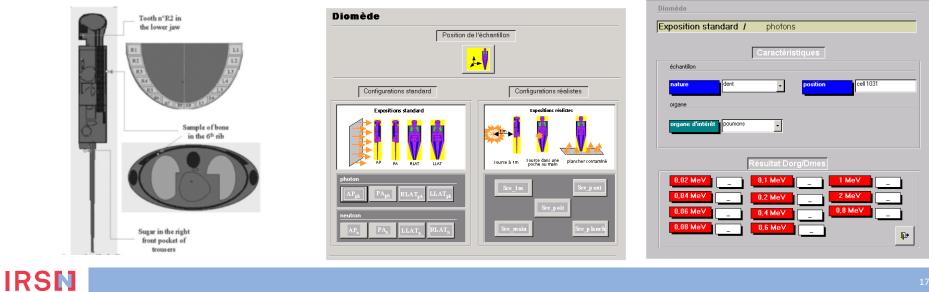
### **Dosimetric triage - Derivation of dose conversion coefficients (1)**

**Objective :** convert the measured physical dose of a sample into an organ dose or a "whole-body" dose

#### Method

- Modelling of one or several locations of the sample
- Modelling of several geometries of exposure
- Calculation of predetermined conversion coefficients with a Monte Carlo code

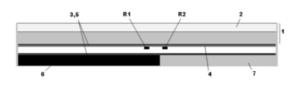


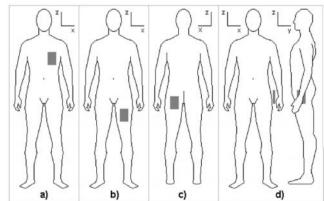

### **Dosimetric triage - Derivation of dose conversion coefficients (2)**

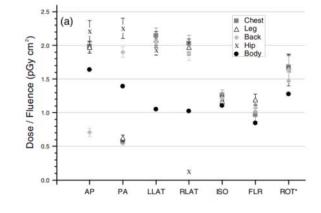
Whole body and organ dose conversion coefficients from EPR fortuitous dosimeter (Hervé et al., 2007)

Exposure: standard exposures (AP, PA, RLAT, LLAT), source at 1 m, in a pocket, a hand and contaminated ground

Ya


- Sources : monoenergetic photons and neutrons, <sup>60</sup>Co, <sup>137</sup>Cs, <sup>192</sup>Ir, <sup>252</sup>Cf and AmBe
- Type of samples / location : teeth, bones, sample in a pocket (sugar for instance)
- MCNPX 2.4 code and MIRD phantom with modified head

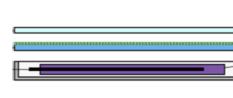


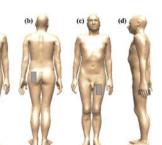


#### **Dosimetric triage - Derivation of dose conversion coefficients (3)**

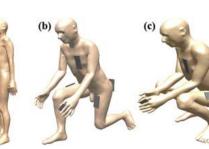
Whole body dose conversion coefficients from mobile phone samples (Eakins and Kouroukla, 2015)

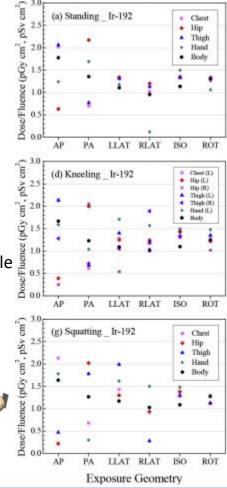
- Exposure: standard exposures (AP, PA, RLAT, LLAT, ISO), rotational and contaminated ground
- Sources : <sup>60</sup>Co, <sup>137</sup>Cs, <sup>192</sup>Ir
- Type of samples / location : resistors (aluminium oxide) / chest, leg, back and hip
- MCNPX code, ICRP 110 reference male phantom, modelling of the mobile phone



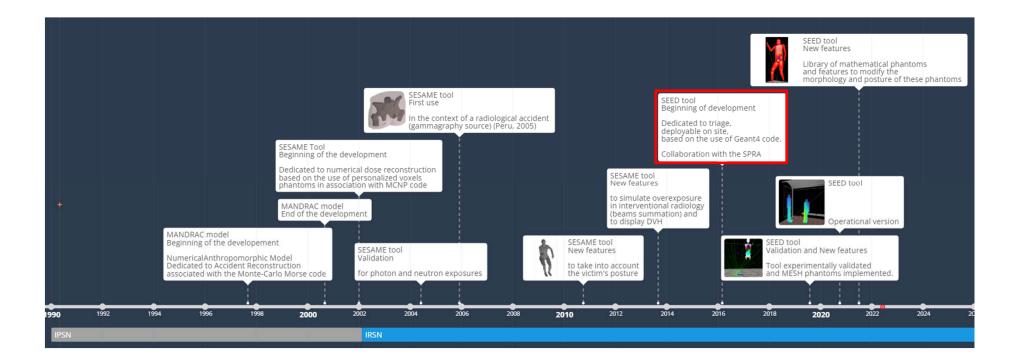




### **Dosimetric triage - Derivation of dose conversion coefficients (4)**


## Whole body dose conversion coefficients from mobile phone samples (Kim *et al.*, 2019)

- Exposure: standard exposures (AP, PA, RLAT, LLAT, ISO) and rotational
- Sources : <sup>60</sup>Co, <sup>137</sup>Cs, <sup>192</sup>Ir
- Type of samples / location : display glass / chest, hip, thigh and hand
- Three different postures: standing, kneeling, squatting
- Geant4 code, ICRP 145 mesh reference male phantom, modelling of the mobile phone







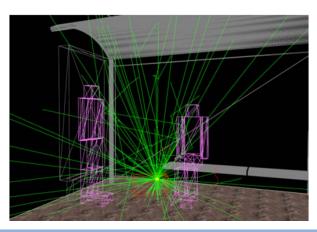


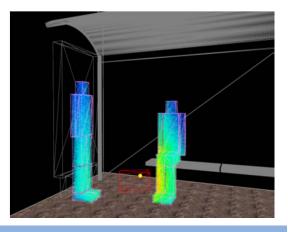

#### Numerical dose reconstruction at IRSN – Timeline of evolution





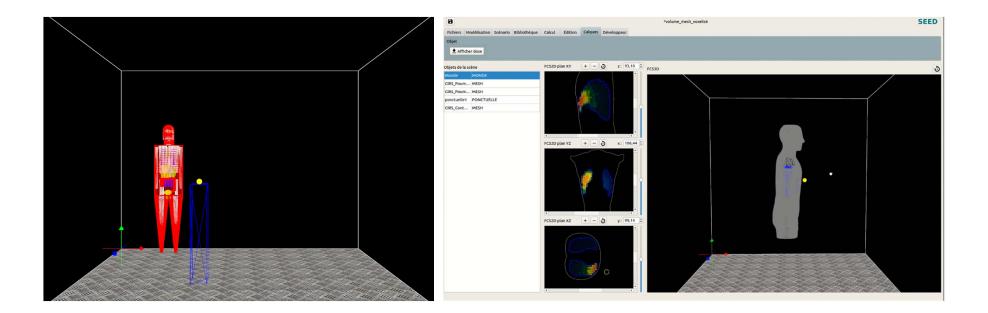
## **Dosimetric triage – SEED tool (Simulation of External Exposures and Dosimetry)**


- Collaboration SPRA/IRSN
- Powerful mobile and autonomous computer (72 cores) deployable on site
- Developed in C++, Geant4 / GATE Monte-Carlo code
- **Collection of input data**



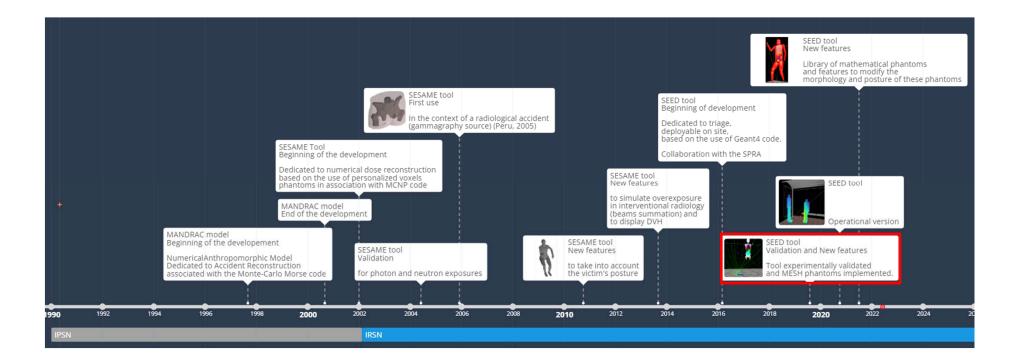



**Results display** 







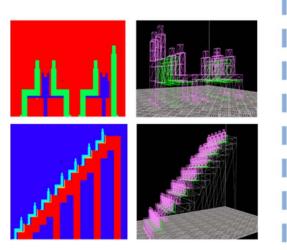


## **Dosimetric triage – SEED tool (Simulation of External Exposures and Dosimetry)**

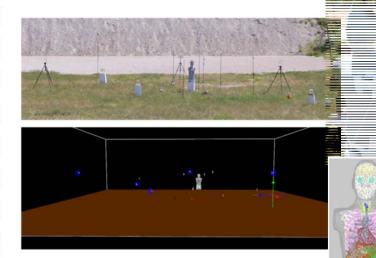


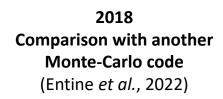




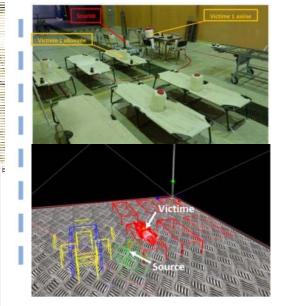
#### Numerical dose reconstruction at IRSN – Timeline of evolution





#### **Dosimetric triage – SEED tool**




## VALIDATION STEPS







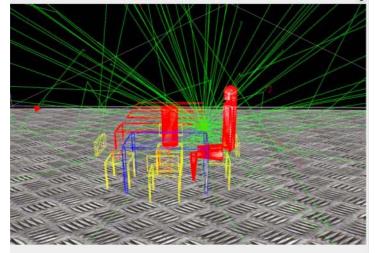
2019 Comparison with experiments (Entine *et al.*, 2022)



2022 Deployment of the tool on site



#### **Dosimetric triage – SEED tool**


#### ONGOING AND FUTURE DEVELOPMENT

- Improvement of ergonomics and ease of use
  - Libraries (anthropomorphic phantoms, furniture, sources, ...)
  - Modeling aids (copy/paste, ...)

Place of the tool in the dosimetric arsenal

- Integration of other dosimetric information (dose rate measurement, dose from a sample,...)
- In field exercises







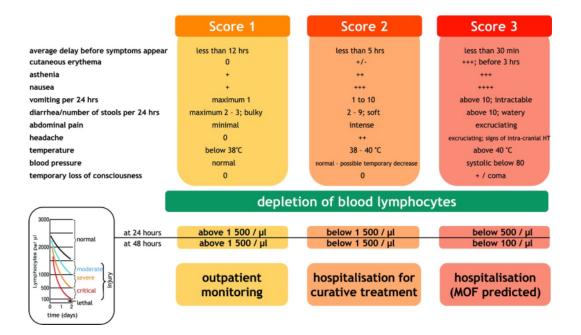
#### Conclusion

- Valuable contribution of computational dosimetry to the management of radiological accidents for small scale accident
  - for diagnostic purposes
  - alone or in combination with other dosimetric techniques

Initial-phase dose assessments for large numbers of people (medium/large scale accidents)

- conceptual approaches but computational dosimetry may have a valuable contribution
- Gap: individual dose assessment with confidence




#### **Goals, research questions and directions of research of computational modeling** (Fattibene *et al.*, 2023)

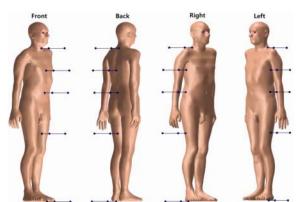
| Research questions                                                              | End goal                                                                                                     | oal Possible directions of research                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            | Dose assessment for<br>large- and small-scale<br>events | Analyze the types of<br>situations in which<br>ignorance of the precise                                                                                                                                                     |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| the dose reconstruction?<br>How to harmonize? Which<br>dose quantity is needed? | Dose assessment and<br>dose mapping for<br>small-scale events                                                | Develop libraries of<br>phantoms, sources,<br>shielding, etc.<br>Develop implementable<br>computational tools [131]                                                                                                                                                                                                                                                                                                                                                                 | sufficient detail to allow<br>dose conversion<br>coefficients to be<br>accurately computed<br>and applied in large-<br>scale scenarios?                                    |                                                         | exposure conditions may<br>either be minimized or have<br>minimal impact, within an<br>acceptable level of<br>agreement also to be<br>established.                                                                          |  |
|                                                                                 | Dose assessment for<br>large-scale and small-<br>scale events and dose<br>mapping for small-<br>scale events | Develop means to perform<br>calculations 'on the fly', to<br>generate conversion<br>coefficients immediately<br>after events rather than<br>relying on pre-tabulated<br>databases<br>Train modellers in<br>computational techniques<br>Support the benchmarking<br>of application through the<br>setup of intercomparison<br>exercises<br>Support collaboration<br>between different experts in<br>RD, and between experts in<br>RD, crisis management<br>units and clinical staff. | Under what sets of<br>situations might the<br>dose to the fortuitous<br>dosemeter be a<br>sufficiently reliable<br>indicator of the dose to<br>the individual?             | Dose assessment for<br>large- and small-scale<br>events | Develop consensus on what<br>level of discrepancy and/or<br>conservatism is acceptable<br>for triage dosimetry seeking<br>collaboration among<br>involved figures, such as<br>experts in RD, crisis<br>management units and |  |
|                                                                                 |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |                                                         | medical experts<br>Generate a database of such<br>conditions and the<br>associated limitations/<br>uncertainties of reporting<br>dosimeter doses 'as is'.                                                                   |  |
|                                                                                 |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | How best to provide dose<br>harmonization from<br>multiple materials<br>(fortuitous dosimeters,<br>radiation monitors,),<br>either co-located or<br>spatially distributed? | Dose assessment for<br>large- and small-scale<br>events | Develop methods to inter-<br>relate such doses, both to<br>each other and to the<br>individual.                                                                                                                             |  |

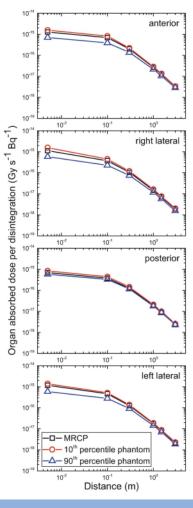
Thank you for your attention



#### The first 48 hours : Primary scoring







#### **Small scale accident - Dose conversion coefficients**

Whole body and organ dose conversion coefficients for industrial sources (Kim et al., 2018; Han et al., 2019)

- Exposure: three distances (0.5, 10, and 30 cm) in four directions (front, back, right, and left) at five levels (ground, mid thigh, lower torso, mid torso, and upper torso)
- Sources : <sup>60</sup>Co and <sup>192</sup>Ir point sources
- Calculation of source self-shielding factors
- Geant4 code, MRCP phantoms (ICRP 145) and 10th and 90th percentile MESH phantoms

| Capsule-wall thickness | s Radioactive material thickness |                  |                   |                  |       |                  |                   |                  |  |
|------------------------|----------------------------------|------------------|-------------------|------------------|-------|------------------|-------------------|------------------|--|
|                        | 1 mm                             |                  | 2 mm              |                  | 3 mm  |                  | 4 mm              |                  |  |
|                        | <sup>192</sup> Ir                | <sup>60</sup> Co | <sup>192</sup> Ir | <sup>60</sup> Co | 192Ir | <sup>60</sup> Co | <sup>192</sup> Ir | <sup>60</sup> Co |  |
| 1 mm                   | 0.840                            | 0.972            | 0.717             | 0.965            | 0.627 | 0.958            | 0.556             | 0.949            |  |
| 2 mm                   | 0.803                            | 0.953            | 0.694             | 0.947            | 0.606 | 0.938            | 0.536             | 0.929            |  |



