

Investigations into the dose to fetus under maternal proton therapy

EURADOS WG6 Webinar

14th March 2023

Hrvoje Brkić

hbrkic@mefos.hr

1

WG9 activities

- Out-of-field doses in proton therapy (PT)
 - Production of the secondary neutrons
 - Unavoidable due to:
 - Interaction of high energy protons with beam line materials
 - Patients body
 - WG9 focuses on:
 - Assessment of neutron dose equivalent for PT facilities
 - Undesired out of field doses during PT
 - Doses to the fetus

IPOPORTO

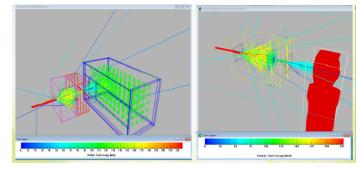
sck cen

(CERN)

zZentrum münchen

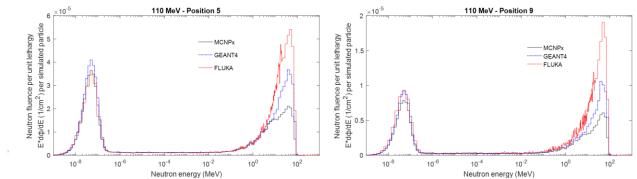
Bundesamt für Strahlenschut

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research


Skandionkliniken

MF Josip Jurej Strossmayer University of Osijek

MC simulations in PT


- Compute the neutron doses
 - Not considered by the treatment planning system
- Shielding of the PT facilities
 - Neutron ambient dose equivalent
- Spectral neutron fluence
 - Inside and outside the treatment room

Issues

- Usage of cross sections for higher energies
 - Rely on nuclear models
 - Intranuclear cascade model (INC) (Bertini, ISABEL...)
 - Preequilibrium models
 - Evaporation models (Dresner, Abla)
- Which one is more suitable??

Intercomparisons

- Computational campaigns with no reference solution
 - Different codes (or the versions of the same code)
 - Different approaches
 - Different participants (groups)

Fetus dose estimation

- Initial simulation conditions
 - Circular beam r = 3 cm
 - SOPB range 10 cm, modulation 5 cm
 - 21 energies ranging from 78 to 116 MeV
 - Target center of the brain

Phantom

- Katja¹
- 24th week of pregnancy

Becker, Janine, et al. "KatjaThe 24th week of virtual
pregnancyfor dosimetric calculations." Polish Journal
of Medical Physics and Engineering 14.1 (2008)

Phantom	Katja
Weeks of	24
pregnancy	
Female height	168
[cm]	
Female mass [kg]	63.6
Fetus mass [g]	730
Voxel size [mm ³]	1.775×1.775
	× 4.84

Number of voxels 15.7 (*10⁶)

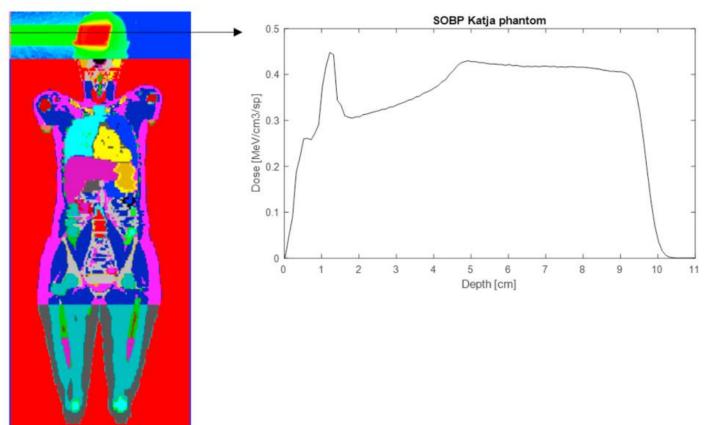
First results

Results differ

- Up to 50 % among the participants
- What went wrong?

Was it the code?

- MCNPX
- MCNP6.2
- All participants repeated simulations with both code versions



Was it the code?

- MCNPX
- MCNP6.2
- All participants repeated simulations with both code versions
- Results still differ significantly

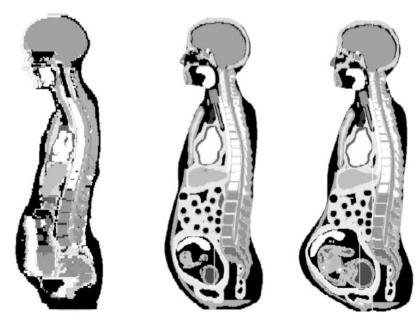
Positioning of the beam?

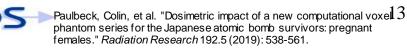
Is it the phantom?

• UF phantoms were engaged

Gestational age and post conceptual

Phantom


Katja


•

University of Florida (UF) family of phantoms²

Physical and geometrical characteristics of the different phantoms used.

Phantom	Katja	UF20	UF25	
Weeks of pregnancy	24	22	27	
Female height [cm]	168	164	164	
Female mass [kg]	63.6	63.6	65.8	
Fetus mass [g]	730	468	986	
Voxel size [mm ³]	1.775×1.775	$1.26\times1.26\times2.7$	$1.26 \times 1.26 \times 2.7$	
	× 4.84	Mother	Mother	
		0.301 \times 0.301 \times	0.381 \times 0.381 \times	
		0.301 Fetus	0.381 Fetus	
Number of voxels	15.7	53.65 fetus	51.96 fetus	
(*10 ⁶)		57.24 Mother	66.78 Mother	

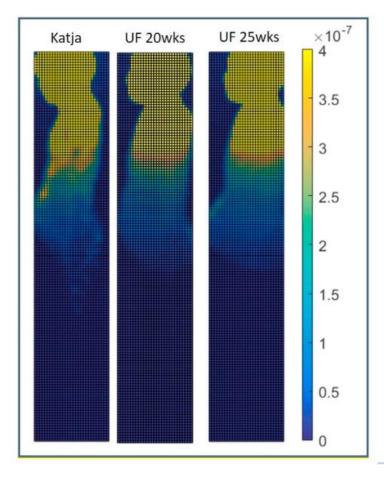
Is it the phantom?

• UF phantoms were engaged

Gestational age and post conceptual

Tissue composition definition (only 0.3 % difference)

Nuclear models


- Different code version uses different cross section data libraries
- MCNPX
- MCNP6.2
- Definition of atomic number of the element, mass number of the nuclide and cross-section identifier

Models used for

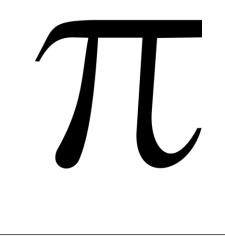
MCNPX	MCNP6.2
6000.c	6000.h
12000.c	11023.h
16000.c	12000.h
17000.c	16000.h
19000.c	17000.h
20000.c	19000.h
26000.c	19000.h
53000.c	20000.h
6000.h	26000.h
11023.h	53127.h
12000.h	
16000.h	
17000.h	
19000.h	
20000.h	
26000.h	
53000.h	

Results

	Katja	UF20	UF25
Dose equivalent per target dose [nSv/Gy]	750	355	396

Hints to pick up

- Keep Your files and file names organized
- Regular periodic meetings of the group
- Avoid biasing (i.e. sharing the input)
- Compare Your results with already published data
- Cross section data libraries should be added to papers when published to allow for comparison



Hints to pick up

- Skipping the geometry check might speed up the calculations
- When PT is considered for the simulations consider engaging the code that can read input and geometries from the DICOM files
- Start with simple problem and try to benchmark the results

Thank You for Your attention!

Contents lists available at ScienceDirect

Radiation Measurements

journal homepage: www.elsevier.com/locate/radmeas

Contents lists available at ScienceDirect

Radiation Measurements

journal homepage: www.elsevier.com/locate/radmeas

Fetus dose calculation during proton therapy of pregnant phantoms using MCNPX and MCNP6.2 codes

Marijke De Saint-Hubert^a, Katarzyna Tymińska^b, Liliana Stolarczyk^{c,d}, Hrvoje Brkić^{e,f,*}

^e Department of Biophysics and Radiology, Faculty of Medicine, J. J. Strossmayer University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia ^f Department of Biophysics, Biology and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Crkvena 21, HR-31000, Osijek, Croatia The influence of nuclear models and Monte Carlo radiation transport codes on stray neutron dose estimations in proton therapy

M. De Saint-Hubert^{a,*}, J. Farah^b, M. Klodowska^c, M.T. Romero-Expósito^{d,e}, K. Tyminska^f, V. Mares^g, P. Olko^h, L. Stolarczyk^{h,i}, S. Trinkl^j

^a Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, BE-2400, Mol, Belgium

- ^c Department of Medical Physics and Clinical Engineering, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
- ^d Universitat Autònoma de Barcelona, Departament de Física, E-08193, Bellaterra, Spain
- ^e Instituto Tecnológico de Santo Domingo (INTEC), P.O. Box 342-9/249-2, Santo Domingo, Dominican Republic
- ^f National Centre for Nuclear Research, A. Soltana 7, 05-400, Otwock-Swierk, Poland
- ^g Helmholts Zentrum München, Institute of Radiation Medicine, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- ^h Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342, Krakow, Poland
- ⁱ The Danish Centre for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, DK-8200, Aarhus, Denmark
- Rederal Office for Rediction Protection Medical and Occupational Rediction Protection Inselstation Landstraße 1, 05764 Neuberbarg Commany

^a Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, BE-2400, Mol, Belgium

^b National Centre for Nuclear Research, A. Soltana 7, Otwock, 05-400, Poland

^c Danish Centre for Particle Therapy – DCPT, Denmark

^d Cyclotron Centre Bronowice - CCB IFJ PAN, Poland

^b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l'Homme, BP17, 92260, Fontenay-aux-Roses, France